Cryptocurrency policy uncertainty and gold return forecasting: A dynamic Occam's window approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.frl.2022.103251
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Selmi, Refk & Mensi, Walid & Hammoudeh, Shawkat & Bouoiyour, Jamal, 2018.
"Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold,"
Energy Economics, Elsevier, vol. 74(C), pages 787-801.
- Refk Selmi & Walid Mensi & Shawkat Hammoudeh & Jamal Bouoiyour, 2018. "Is Bitcoin a hedge, a safe haven or a diversifier for oil price movements? A comparison with gold," Post-Print hal-01879667, HAL.
- Dirk G. Baur & Brian M. Lucey, 2010.
"Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold,"
The Financial Review, Eastern Finance Association, vol. 45(2), pages 217-229, May.
- Dirk G. Baur & Brian M. Lucey, 2007. "Is Gold a Hedge or a Safe Haven? An Analysis of Stocks, Bonds and Gold," The Institute for International Integration Studies Discussion Paper Series iiisdp198, IIIS.
- Wu, Shan & Tong, Mu & Yang, Zhongyi & Derbali, Abdelkader, 2019. "Does gold or Bitcoin hedge economic policy uncertainty?," Finance Research Letters, Elsevier, vol. 31(C), pages 171-178.
- Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
- Yan, Lei & Mirza, Nawazish & Umar, Muhammad, 2022. "The cryptocurrency uncertainties and investment transitions: Evidence from high and low carbon energy funds in China," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Degiannakis, Stavros & Filis, George, 2017.
"Forecasting oil price realized volatility using information channels from other asset classes,"
Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
- Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," MPRA Paper 96276, University Library of Munich, Germany.
- Dyhrberg, Anne Haubo, 2016. "Bitcoin, gold and the dollar – A GARCH volatility analysis," Finance Research Letters, Elsevier, vol. 16(C), pages 85-92.
- John Y. Campbell & Samuel B. Thompson, 2008.
"Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?,"
The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
- Campbell, John & Thompson, Samuel P., 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," Scholarly Articles 2622619, Harvard University Department of Economics.
- Aye, Goodness & Gupta, Rangan & Hammoudeh, Shawkat & Kim, Won Joong, 2015.
"Forecasting the price of gold using dynamic model averaging,"
International Review of Financial Analysis, Elsevier, vol. 41(C), pages 257-266.
- Goodness C. Aye & Rangan Gupta & Shawkat Hammoudeh & Won Joong Kim, 2014. "Forecasting the Price of Gold Using Dynamic Model Averaging," Working Papers 201415, University of Pretoria, Department of Economics.
- Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
- Wei, Yu & Liang, Chao & Li, Yan & Zhang, Xunhui & Wei, Guiwu, 2020. "Can CBOE gold and silver implied volatility help to forecast gold futures volatility in China? Evidence based on HAR and Ridge regression models," Finance Research Letters, Elsevier, vol. 35(C).
- Bonato, Matteo & Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian, 2018.
"Gold futures returns and realized moments: A forecasting experiment using a quantile-boosting approach,"
Resources Policy, Elsevier, vol. 57(C), pages 196-212.
- Matteo Bonato & Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2016. "Gold Futures Returns and Realized Moments: A Forecasting Experiment Using a Quantile-Boosting Approach," Working Papers 201645, University of Pretoria, Department of Economics.
- Luo, Jiawen & Demirer, Riza & Gupta, Rangan & Ji, Qiang, 2022.
"Forecasting oil and gold volatilities with sentiment indicators under structural breaks,"
Energy Economics, Elsevier, vol. 105(C).
- Jiawen Luo & Riza Demirer & Rangan Gupta & Qiang Ji, 2021. "Forecasting Oil and Gold Volatilities with Sentiment Indicators Under Structural Breaks," Working Papers 202130, University of Pretoria, Department of Economics.
- Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
- Pesaran, M Hashem & Timmermann, Allan, 1992.
"A Simple Nonparametric Test of Predictive Performance,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
- Pesaran, M.H. & Timmermann, A., 1990. "A Simple, Non-Parametric Test Of Predictive Performance," Cambridge Working Papers in Economics 9021, Faculty of Economics, University of Cambridge.
- Pesaran, M.H. & Timmermann, A., 1990. "A Simple Non-Parametric Test Of Predictive Performance," Papers 29, California Los Angeles - Applied Econometrics.
- Onorante, Luca & Raftery, Adrian E., 2016.
"Dynamic model averaging in large model spaces using dynamic Occam׳s window,"
European Economic Review, Elsevier, vol. 81(C), pages 2-14.
- Luca Onorante & Adrian E. Raftery, 2014. "Dynamic Model Averaging in Large Model Spaces Using Dynamic Occam's Window," Papers 1410.7799, arXiv.org.
- Chemkha, Rahma & BenSaïda, Ahmed & Ghorbel, Ahmed & Tayachi, Tahar, 2021. "Hedge and safe haven properties during COVID-19: Evidence from Bitcoin and gold," The Quarterly Review of Economics and Finance, Elsevier, vol. 82(C), pages 71-85.
- Klein, Tony & Pham Thu, Hien & Walther, Thomas, 2018.
"Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance,"
International Review of Financial Analysis, Elsevier, vol. 59(C), pages 105-116.
- Klein, Tony & Thu, Hien Pham & Walther, Thomas, 2018. "Bitcoin is not the New Gold - A Comparison of Volatility, Correlation, and Portfolio Performance," IRTG 1792 Discussion Papers 2018-015, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Thomas Walther & Tony Klein & Hien Pham Thu, 2018. "Bitcoin is not the New Gold - A Comparison of Volatility, Correlation, and Portfolio Performance," Working Papers on Finance 1812, University of St. Gallen, School of Finance.
- Klein, Tony & Hien, Pham Thu & Walther, Thomas, 2018. "Bitcoin Is Not the New Gold: A Comparison of Volatility, Correlation, and Portfolio Performance," QBS Working Paper Series 2018/01, Queen's University Belfast, Queen's Business School.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
- Hussain Shahzad, Syed Jawad & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav, 2020. "Safe haven, hedge and diversification for G7 stock markets: Gold versus bitcoin," Economic Modelling, Elsevier, vol. 87(C), pages 212-224.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Madziwa, Lawrence & Pillalamarry, Mallikarjun & Chatterjee, Snehamoy, 2022. "Gold price forecasting using multivariate stochastic model," Resources Policy, Elsevier, vol. 76(C).
- Baur, Dirk G. & Hoang, Lai, 2021. "The Bitcoin gold correlation puzzle," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
- Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
- Hassan, M. Kabir & Hasan, Md. Bokhtiar & Rashid, Md. Mamunur, 2021. "Using precious metals to hedge cryptocurrency policy and price uncertainty," Economics Letters, Elsevier, vol. 206(C).
- Chen, Rongda & Xu, Jianjun, 2019. "Forecasting volatility and correlation between oil and gold prices using a novel multivariate GAS model," Energy Economics, Elsevier, vol. 78(C), pages 379-391.
- Huynh, Toan Luu Duc & Nasir, Muhammad Ali & Vo, Xuan Vinh & Nguyen, Thong Trung, 2020. "“Small things matter most”: The spillover effects in the cryptocurrency market and gold as a silver bullet," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Bouri, Elie & Shahzad, Syed Jawad Hussain & Roubaud, David & Kristoufek, Ladislav & Lucey, Brian, 2020. "Bitcoin, gold, and commodities as safe havens for stocks: New insight through wavelet analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 156-164.
- Wei, Yu & Liu, Jing & Lai, Xiaodong & Hu, Yang, 2017. "Which determinant is the most informative in forecasting crude oil market volatility: Fundamental, speculation, or uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 141-150.
- David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
- Lucey, Brian M. & Vigne, Samuel A. & Yarovaya, Larisa & Wang, Yizhi, 2022. "The cryptocurrency uncertainty index," Finance Research Letters, Elsevier, vol. 45(C).
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020.
"Forecasting realized gold volatility: Is there a role of geopolitical risks?,"
Finance Research Letters, Elsevier, vol. 35(C).
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Forecasting Realized Gold Volatility: Is there a Role of Geopolitical Risks?," Working Papers 201943, University of Pretoria, Department of Economics.
- Shahzad, Syed Jawad Hussain & Bouri, Elie & Roubaud, David & Kristoufek, Ladislav & Lucey, Brian, 2019. "Is Bitcoin a better safe-haven investment than gold and commodities?," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 322-330.
- Mihaylov, George & Cheong, Chee Seng & Zurbruegg, Ralf, 2015. "Can security analyst forecasts predict gold returns?," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 237-246.
- Bouri, Elie & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "Forecasting power of infectious diseases-related uncertainty for gold realized variance," Finance Research Letters, Elsevier, vol. 42(C).
- Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
- Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
- Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015.
"Forecasting the price of gold,"
Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
- Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2014. "Forecasting the Price of Gold," Working Papers 201428, University of Pretoria, Department of Economics.
- Fang, Libing & Yu, Honghai & Xiao, Wen, 2018. "Forecasting gold futures market volatility using macroeconomic variables in the United States," Economic Modelling, Elsevier, vol. 72(C), pages 249-259.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wei, Yu & Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A., 2023. "Cryptocurrency uncertainty and volatility forecasting of precious metal futures markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
- Mercik, Aleksander & Słoński, Tomasz & Karaś, Marta, 2024. "Understanding crypto-asset exposure: An investigation of its impact on performance and stock sensitivity among listed companies," International Review of Financial Analysis, Elsevier, vol. 92(C).
- Yousaf, Imran & Goodell, John W., 2023. "Linkages between CBDC and cryptocurrency uncertainties, and digital payment stocks," Finance Research Letters, Elsevier, vol. 54(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wei, Yu & Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A., 2023. "Cryptocurrency uncertainty and volatility forecasting of precious metal futures markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
- Chao Liang & Yaojie Zhang & Xiafei Li & Feng Ma, 2022. "Which predictor is more predictive for Bitcoin volatility? And why?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1947-1961, April.
- Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).
- Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
- Chu, Jeffrey & Chan, Stephen & Zhang, Yuanyuan, 2021. "Bitcoin versus high-performance technology stocks in diversifying against global stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
- Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
- Vasilios Plakandaras & Periklis Gogas & Theophilos Papadimitriou, 2021. "Gold Against the Machine," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 5-28, January.
- Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Rubaiyat Ahsan Bhuiyan & Afzol Husain & Changyong Zhang, 2023. "Diversification evidence of bitcoin and gold from wavelet analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-36, December.
- Sakemoto, Ryuta, 2021. "Economic Evaluation of Cryptocurrency Investment," MPRA Paper 108283, University Library of Munich, Germany.
- Yousaf, Imran & Plakandaras, Vasilios & Bouri, Elie & Gupta, Rangan, 2023. "Hedge and safe-haven properties of FAANA against gold, US Treasury, bitcoin, and US Dollar/CHF during the pandemic period," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
- Hoque, Mohammad Enamul & Billah, Mabruk & Alam, Md Rafayet & Tiwari, Aviral Kumar, 2024. "Gold-backed cryptocurrencies: A hedging tool against categorical and regional financial stress," Global Finance Journal, Elsevier, vol. 60(C).
- Wang, Jiqian & He, Xiaofeng & Ma, Feng & Li, Pan, 2022. "Uncertainty and oil volatility: Evidence from shrinkage method," Resources Policy, Elsevier, vol. 75(C).
- Duc Huynh, Toan Luu & Burggraf, Tobias & Wang, Mei, 2020. "Gold, platinum, and expected Bitcoin returns," Journal of Multinational Financial Management, Elsevier, vol. 56(C).
- Rangan Gupta & Sayar Karmakar & Christian Pierdzioch, 2024.
"Safe Havens, Machine Learning, and the Sources of Geopolitical Risk: A Forecasting Analysis Using Over a Century of Data,"
Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 487-513, July.
- Rangan Gupta & Sayar Karmakar & Christian Pierdzioch, 2022. "Safe Havens, Machine Learning, and the Sources of Geopolitical Risk: A Forecasting Analysis Using Over a Century of Data," Working Papers 202201, University of Pretoria, Department of Economics.
- Risse, Marian, 2019. "Combining wavelet decomposition with machine learning to forecast gold returns," International Journal of Forecasting, Elsevier, vol. 35(2), pages 601-615.
- Ihsan Erdem Kayral & Ahmed Jeribi & Sahar Loukil, 2023. "Are Bitcoin and Gold a Safe Haven during COVID-19 and the 2022 Russia–Ukraine War?," JRFM, MDPI, vol. 16(4), pages 1-22, April.
- Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Feng, Hao & Gao, Da & Duan, Kun & Urquhart, Andrew, 2023. "Does Bitcoin affect decomposed oil shocks differently? Evidence from a quantile-based framework," International Review of Financial Analysis, Elsevier, vol. 89(C).
More about this item
Keywords
Gold return forecast; Cryptocurrency uncertainty; Dynamic model averaging; Dynamic Occam's window;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:50:y:2022:i:c:s1544612322004482. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.