IDEAS home Printed from https://ideas.repec.org/p/onb/oenbwp/228.html
   My bibliography  Save this paper

Serial Correlation in Contingency Tables (Helmut Elsinger)

Author

Abstract

Pearson's chi-squared test for independence in two-way contingency tables is developed under the assumption of multinomial sampling. In this paper I consider the case where draws are not independent but exhibit serial dependence. I derive the asymptotic distribution and show that adjusting Pearson's statistic is simple and works reasonably well irrespective whether the processes are Markov chains or m-dependent. Moreover, I propose a test for independence that has a simple limiting distribution if at least one of the two processes is a Markov chain. For three-way tables I investigate the Cochrane-Mantel-Haenszel (CMH) statistic and show that there exists a closely related procedure that has power against a larger class of alternatives. This new statistic might be used to test whether a Markov chain is simple against the alternative of being a Markov chain of higher order. Monte Carlo experiments are used to illustrate the small sample properties.

Suggested Citation

  • Helmut Elsinger, 2020. "Serial Correlation in Contingency Tables (Helmut Elsinger)," Working Papers 228, Oesterreichische Nationalbank (Austrian Central Bank).
  • Handle: RePEc:onb:oenbwp:228
    as

    Download full text from publisher

    File URL: https://www.oenb.at/dam/jcr:d07470f4-92d8-4ed4-9ac7-4ecba4e4135d/WP228.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chou, Cheng & Chu, Chia-Shang J., 2010. "Testing independence of two autocorrelated binary time series," Statistics & Probability Letters, Elsevier, vol. 80(1), pages 69-75, January.
    2. Pesaran, M. Hashem & Timmermann, Allan, 2009. "Testing Dependence Among Serially Correlated Multicategory Variables," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2014. "Are there gains from pooling real-time oil price forecasts?," Energy Economics, Elsevier, vol. 46(S1), pages 33-43.
    2. Wang, Yudong & Liu, Li & Diao, Xundi & Wu, Chongfeng, 2015. "Forecasting the real prices of crude oil under economic and statistical constraints," Energy Economics, Elsevier, vol. 51(C), pages 599-608.
    3. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    4. Lahiri, Kajal & Peng, Huaming & Zhao, Yongchen, 2015. "Testing the value of probability forecasts for calibrated combining," International Journal of Forecasting, Elsevier, vol. 31(1), pages 113-129.
    5. Wang, Yudong & Hao, Xianfeng, 2022. "Forecasting the real prices of crude oil: A robust weighted least squares approach," Energy Economics, Elsevier, vol. 116(C).
    6. Christiane Baumeister & Lutz Kilian, 2014. "Do oil price increases cause higher food prices? [Biofuels, binding constraints, and agricultural commodity price volatility]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 29(80), pages 691-747.
    7. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    8. James Mitchell & Richard J. Smith & Martin R. Weale, 2013. "Efficient Aggregation Of Panel Qualitative Survey Data," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 580-603, June.
    9. Bernard, Jean-Thomas & Khalaf, Lynda & Kichian, Maral & Yelou, Clement, 2018. "Oil Price Forecasts For The Long Term: Expert Outlooks, Models, Or Both?," Macroeconomic Dynamics, Cambridge University Press, vol. 22(3), pages 581-599, April.
    10. Reinhard Ellwanger, Stephen Snudden, 2021. "Predictability of Aggregated Time Series," LCERPA Working Papers bm0127, Laurier Centre for Economic Research and Policy Analysis.
    11. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    12. Chrystalleni Aristidou & Kevin Lee & Kalvinder Shields, 2015. "Real-Time Data should be used in Forecasting Output Growth and Recessionary Events in the US," Discussion Papers 2015/13, University of Nottingham, Centre for Finance, Credit and Macroeconomics (CFCM).
    13. Christiane Baumeister & Lutz Kilian & Thomas K. Lee, 2017. "Inside the Crystal Ball: New Approaches to Predicting the Gasoline Price at the Pump," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 275-295, March.
    14. Christiane Baumeister & Lutz Kilian, 2015. "Forecasting the Real Price of Oil in a Changing World: A Forecast Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(3), pages 338-351, July.
    15. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    16. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    17. Amor Aniss Benmoussa, Reinhard Ellwanger, Stephen Snudden, 2023. "Carpe Diem: Can daily oil prices improve model-based forecasts of the real price of crude oil?," LCERPA Working Papers bm0141, Laurier Centre for Economic Research and Policy Analysis.
    18. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    19. Garratt, Anthony & Lee, Kevin & Shields, Kalvinder, 2016. "Forecasting global recessions in a GVAR model of actual and expected output," International Journal of Forecasting, Elsevier, vol. 32(2), pages 374-390.
    20. Harri Pönkä, 2017. "Predicting the direction of US stock markets using industry returns," Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.

    More about this item

    Keywords

    Goodness of Fit; Independence Tests; Cochrane-Mantel-Haenszel Test; Markov chain;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:onb:oenbwp:228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Markus Knell (email available below). General contact details of provider: https://edirc.repec.org/data/oenbbat.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.