IDEAS home Printed from https://ideas.repec.org/a/wly/agribz/v40y2024i4p846-865.html
   My bibliography  Save this article

Testing the optimality of USDA's WASDE forecasts under unknown loss

Author

Listed:
  • Kexin Ding
  • Ani L. Katchova

Abstract

Motivated by the long‐lasting debate on whether the United States Department of Agriculture's (USDA's) World Agricultural Supply and Demand Estimates (WASDE) forecasts are optimal, we employ an unknown loss method for ex post evaluation which assumes that the USDA forecasters' loss function is unknown. We conduct optimality tests of the WASDE forecasts for corn, soybeans, and wheat published during 1988–2019. Our results suggest that USDA forecasters generally realize optimality during the data‐generating process. Our findings are consistent with previous studies when narrowing down the more general unknown loss function to the symmetric or asymmetric loss function which assumes a specific shape for the loss function. This study provides implications based on the unknown loss function that the USDA forecasters can boost their information set as an alternative way to improve the WASDE forecasts. [EconLit Citations: D84, E37, Q13, Q14].

Suggested Citation

  • Kexin Ding & Ani L. Katchova, 2024. "Testing the optimality of USDA's WASDE forecasts under unknown loss," Agribusiness, John Wiley & Sons, Ltd., vol. 40(4), pages 846-865, October.
  • Handle: RePEc:wly:agribz:v:40:y:2024:i:4:p:846-865
    DOI: 10.1002/agr.21850
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/agr.21850
    Download Restriction: no

    File URL: https://libkey.io/10.1002/agr.21850?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ivana Komunjer & Michael T. Owyang, 2012. "Multivariate Forecast Evaluation and Rationality Testing," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 1066-1080, November.
    2. Isengildina-Massa, Olga & Cao, Xiang & Karali, Berna & Irwin, Scott H. & Adjemian, Michael & Johansson, Robert C., 2021. "When does USDA information have the most impact on crop and livestock markets?," Journal of Commodity Markets, Elsevier, vol. 22(C).
    3. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    4. Stekler, H.O., 2007. "The future of macroeconomic forecasting: Understanding the forecasting process," International Journal of Forecasting, Elsevier, vol. 23(2), pages 237-248.
    5. Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
    6. Sung No & Michael Salassi, 2009. "A Sequential Rationality Test of USDA Preliminary Price Estimates for Selected Program Crops: Rice, Soybeans, and Wheat," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(4), pages 470-482, November.
    7. Irwin, Scott, 2021. "The Relationship of USDA Planted Acreage Revisions for Corn and Soybeans to Changes in Price and Planting Progress," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 11(65), April.
    8. Bailey, DeeVon & Brorsen, B. Wade, 1998. "Trends In The Accuracy Of Usda Production Forecasts For Beef And Pork," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 23(2), pages 1-11, December.
    9. Irwin, Scott, 2021. "The Relationship of USDA Planted Acreage Revisions for Corn and Soybeans to Prevented Plant Acreage," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 11(69), April.
    10. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.
    11. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    12. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    13. Irwin, Scott H. & Sanders, Dwight R. & Good, Darrel L., 2014. "Evaluation of Selected USDA WAOB and NASS Forecasts and Estimates in Corn and Soybeans," Marketing and Outlook Research Reports 183477, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
    14. Karali, Berna & Isengildina-Massa, Olga & Irwin, Scott H. & Adjemian, Michael K. & Johansson, Robert, 2019. "Are USDA reports still news to changing crop markets?," Food Policy, Elsevier, vol. 84(C), pages 66-76.
    15. Irwin, Scott & Sanders, Dwight & Good, Darrel, 2014. "Evaluation of Selected USDA WAOB and NASS Forecasts and Estimates in Corn and Soybeans," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 4, January.
    16. Dwight R. Sanders & Mark R. Manfredo, 2008. "Multiple horizons and information in USDA production forecasts," Agribusiness, John Wiley & Sons, Ltd., vol. 24(1), pages 55-66.
    17. Hajo Holzmann & Matthias Eulert, 2014. "The role of the information set for forecasting - with applications to risk management," Papers 1404.7653, arXiv.org.
    18. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    19. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    20. repec:ags:jrapmc:122314 is not listed on IDEAS
    21. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    22. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    23. Egelkraut, Thorsten M. & Garcia, Philip & Irwin, Scott H. & Good, Darrel L., 2003. "An Evaluation of Crop Forecast Accuracy for Corn and Soybeans: USDA and Private Information Agencies," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 35(1), pages 79-95, April.
    24. G. Gunnelson & W. D. Dobson & S. Pamperin, 1972. "Analysis of the Accuracy of USDA Crop Forecasts," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 54(4_Part_1), pages 639-645.
    25. Sanders, Dwight R. & Manfredo, Mark R., 2002. "Usda Production Forecasts For Pork, Beef, And Broilers: An Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-14, July.
    26. Isengildina-Massa, Olga & MacDonald, Stephen & Xie, Ran, 2012. "A Comprehensive Evaluation of USDA Cotton Forecasts," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(1), pages 1-16, April.
    27. repec:kap:iaecre:v:15:y:2009:i:4:p:470-482 is not listed on IDEAS
    28. Isengildina-Massa, Olga & Karali, Berna & Irwin, Scott H., 2020. "Can Private Forecasters Beat the USDA? Analysis of Relative Accuracy of Crop Acreage and Production Forecasts," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 52(4), pages 545-561, November.
    29. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    30. Lewis, Karen E. & Manfredo, Mark R., 2012. "An Evaluation of the USDA Sugar Production and Consumption Forecasts," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 30(2).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    2. Bahram Sanginabadi, 2018. "USDA Forecasts: A meta-analysis study," Papers 1801.06575, arXiv.org.
    3. MacDonald, Stephen & Ash, Mark & Cooke, Bryce, 2017. "The Evolution of Inefficiency in USDA’s Forecasts of U.S. and World Soybean Markets," MPRA Paper 87545, University Library of Munich, Germany.
    4. Wang, Yiyao & Lee, Tae-Hwy, 2014. "Asymmetric loss in the Greenbook and the Survey of Professional Forecasters," International Journal of Forecasting, Elsevier, vol. 30(2), pages 235-245.
    5. Giovannelli, Alessandro & Pericoli, Filippo Maria, 2020. "Are GDP forecasts optimal? Evidence on European countries," International Journal of Forecasting, Elsevier, vol. 36(3), pages 963-973.
    6. Andrew Patton & Allan Timmermann, 2012. "Forecast Rationality Tests Based on Multi-Horizon Bounds," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 1-17.
    7. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    8. Olga Isengildina‐Massa & Berna Karali & Todd H. Kuethe & Ani L. Katchova, 2021. "Joint Evaluation of the System of USDA's Farm Income Forecasts," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(3), pages 1140-1160, September.
    9. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    10. Ulrich Fritsche & Artur Tarassow, 2017. "Vergleichende Evaluation der Konjunkturprognosen des Instituts für Makroökonomie und Konjunkturforschung an der Hans-Böckler-Stiftung für den Zeitraum 2005-2014," IMK Studies 54-2017, IMK at the Hans Boeckler Foundation, Macroeconomic Policy Institute.
    11. Sun, Yuying & Wang, Shouyang & Zhang, Xun, 2018. "How efficient are China's macroeconomic forecasts? Evidences from a new forecasting evaluation approach," Economic Modelling, Elsevier, vol. 68(C), pages 506-513.
    12. Covey, Theodore & Erickson, Kenneth W., 2003. "Evaluating USDA Forecasts of Farm Assets: 1986-2002," 2003 Regional Committee NCT-194, October 6-7, 2003; Kansas City, Missouri 132405, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
    13. repec:kap:iaecre:v:15:y:2009:i:4:p:470-482 is not listed on IDEAS
    14. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    15. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    16. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    17. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    18. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    19. Sanders, Dwight R. & Manfredo, Mark R., 2003. "USDA Livestock Price Forecasts: A Comprehensive Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-19, August.
    20. Patton, Andrew J., 2011. "Volatility forecast comparison using imperfect volatility proxies," Journal of Econometrics, Elsevier, vol. 160(1), pages 246-256, January.
    21. Yoichi Tsuchiya, 2022. "Evaluating plant managers’ production plans over business cycles: asymmetric loss and rationality," SN Business & Economics, Springer, vol. 2(8), pages 1-29, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:agribz:v:40:y:2024:i:4:p:846-865. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1520-6297 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.