Climate risk and energy futures high frequency volatility prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.132466
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- repec:dau:papers:123456789/4222 is not listed on IDEAS
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
- Liu, Yuanyuan & Niu, Zibo & Suleman, Muhammad Tahir & Yin, Libo & Zhang, Hongwei, 2022. "Forecasting the volatility of crude oil futures: The role of oil investor attention and its regime switching characteristics under a high-frequency framework," Energy, Elsevier, vol. 238(PA).
- Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015.
"Investor Sentiment Aligned: A Powerful Predictor of Stock Returns,"
The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 791-837.
- Dashan Huang & Fuwei Jiang & Jun Tu & Guofu Zhou, 2015. "Investor Sentiment Aligned: A Powerful Predictor of Stock Returns," CEMA Working Papers 676, China Economics and Management Academy, Central University of Finance and Economics.
- Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
- Qadan, Mahmoud & Nama, Hazar, 2018. "Investor sentiment and the price of oil," Energy Economics, Elsevier, vol. 69(C), pages 42-58.
- Darwin Choi & Zhenyu Gao & Wenxi Jiang, 2020. "Attention to Global Warming," The Review of Financial Studies, Society for Financial Studies, vol. 33(3), pages 1112-1145.
- Tumala, Mohammed M. & Salisu, Afees & Nmadu, Yaaba B., 2023. "Climate change and fossil fuel prices: A GARCH-MIDAS analysis," Energy Economics, Elsevier, vol. 124(C).
- Liu, Jing & Ma, Feng & Tang, Yingkai & Zhang, Yaojie, 2019. "Geopolitical risk and oil volatility: A new insight," Energy Economics, Elsevier, vol. 84(C).
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Stambaugh, Robert F. & Yu, Jianfeng & Yuan, Yu, 2012.
"The short of it: Investor sentiment and anomalies,"
Journal of Financial Economics, Elsevier, vol. 104(2), pages 288-302.
- Robert F. Stambaugh & Jianfeng Yu & Yu Yuan, 2011. "The Short of It: Investor Sentiment and Anomalies," NBER Working Papers 16898, National Bureau of Economic Research, Inc.
- Zhang, Yaojie & He, Mengxi & Wang, Yudong & Liang, Chao, 2023. "Global economic policy uncertainty aligned: An informative predictor for crude oil market volatility," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1318-1332.
- Cheung, Yin-Wong & Lai, Kon S, 1995. "Lag Order and Critical Values of the Augmented Dickey-Fuller Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 277-280, July.
- Kirstin Hubrich & Frauke Skudelny, 2017.
"Forecast Combination for Euro Area Inflation: A Cure in Times of Crisis?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(5), pages 515-540, August.
- Hubrich, Kirstin & Skudelny, Frauke, 2016. "Forecast combination for euro area inflation: a cure in times of crisis?," Working Paper Series 1972, European Central Bank.
- Kirstin Hubrich & Frauke Skudelny, 2016. "Forecast Combination for Euro Area Inflation - A Cure in Times of Crisis?," Finance and Economics Discussion Series 2016-104, Board of Governors of the Federal Reserve System (U.S.).
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Xiu, Dacheng, 2010. "Quasi-maximum likelihood estimation of volatility with high frequency data," Journal of Econometrics, Elsevier, vol. 159(1), pages 235-250, November.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
- Clark, Todd E. & West, Kenneth D., 2007.
"Approximately normal tests for equal predictive accuracy in nested models,"
Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
- Todd E. Clark & Kenneth D. West, 2005. "Approximately normal tests for equal predictive accuracy in nested models," Research Working Paper RWP 05-05, Federal Reserve Bank of Kansas City.
- Kenneth D. West & Todd Clark, 2006. "Approximately Normal Tests for Equal Predictive Accuracy in Nested Models," NBER Technical Working Papers 0326, National Bureau of Economic Research, Inc.
- Bonato, Matteo & Cepni, Oguzhan & Gupta, Rangan & Pierdzioch, Christian, 2023.
"Climate risks and state-level stock market realized volatility,"
Journal of Financial Markets, Elsevier, vol. 66(C).
- Matteo Bonato & Oguzhan Cepni & Rangan Gupta & Christian Pierdzioch, 2022. "Climate Risks and State-Level Stock-Market Realized Volatility," Working Papers 202246, University of Pretoria, Department of Economics.
- Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
- Dutta, Anupam & Bouri, Elie & Saeed, Tareq, 2021. "News-based equity market uncertainty and crude oil volatility," Energy, Elsevier, vol. 222(C).
- Song, Yixuan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2023. "Forecasting crude oil prices: A reduced-rank approach," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 698-711.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Fang, Tianhui & Zheng, Chunling & Wang, Donghua, 2023. "Forecasting the crude oil prices with an EMD-ISBM-FNN model," Energy, Elsevier, vol. 263(PA).
- Venturini, Alessio, 2022. "Climate change, risk factors and stock returns: A review of the literature," International Review of Financial Analysis, Elsevier, vol. 79(C).
- Guo, Yangli & He, Feng & Liang, Chao & Ma, Feng, 2022. "Oil price volatility predictability: New evidence from a scaled PCA approach," Energy Economics, Elsevier, vol. 105(C).
- Chatziantoniou, Ioannis & Filippidis, Michail & Filis, George & Gabauer, David, 2021. "A closer look into the global determinants of oil price volatility," Energy Economics, Elsevier, vol. 95(C).
- Zhang, Yaojie & He, Mengxi & Wen, Danyan & Wang, Yudong, 2023. "Forecasting crude oil price returns: Can nonlinearity help?," Energy, Elsevier, vol. 262(PB).
- Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
- Balvers, Ronald & Du, Ding & Zhao, Xiaobing, 2017. "Temperature shocks and the cost of equity capital: Implications for climate change perceptions," Journal of Banking & Finance, Elsevier, vol. 77(C), pages 18-34.
- Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
- Xue Gong & Xin Ye & Weiguo Zhang & Yue Zhang, 2023. "Predicting energy futures high-frequency volatility using technical indicators: The role of interaction," Post-Print hal-04232649, HAL.
- Liang, Chao & Wang, Lu & Duong, Duy, 2024. "More attention and better volatility forecast accuracy: How does war attention affect stock volatility predictability?," Journal of Economic Behavior & Organization, Elsevier, vol. 218(C), pages 1-19.
- Hai Lin & Chunchi Wu & Guofu Zhou, 2018. "Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach," Management Science, INFORMS, vol. 64(9), pages 4218-4238, September.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Degiannakis, Stavros & Filis, George, 2022.
"Oil price volatility forecasts: What do investors need to know?,"
Journal of International Money and Finance, Elsevier, vol. 123(C).
- Degiannakis, Stavros & Filis, George, 2019. "Oil price volatility forecasts: What do investors need to know?," MPRA Paper 94445, University Library of Munich, Germany.
- Aswani, Jitendra & Raghunandan, Aneesh & Rajgopal, Shivaram, 2024. "Are carbon emissions associated with stock returns?," LSE Research Online Documents on Economics 118364, London School of Economics and Political Science, LSE Library.
- Xie, Qiwei & Hao, Jingjing & Li, Jingyu & Zheng, Xiaolong, 2022. "Carbon price prediction considering climate change: A text-based framework," Economic Analysis and Policy, Elsevier, vol. 74(C), pages 382-401.
- Jitendra Aswani & Aneesh Raghunandan & Shiva Rajgopal, 2024. "Are Carbon Emissions Associated with Stock Returns?—Reply," Review of Finance, European Finance Association, vol. 28(1), pages 111-115.
- Zhao, Yuan & Zhang, Weiguo & Gong, Xue & Wang, Chao, 2021. "A novel method for online real-time forecasting of crude oil price," Applied Energy, Elsevier, vol. 303(C).
- Jitendra Aswani & Aneesh Raghunandan & Shiva Rajgopal, 2024. "Are Carbon Emissions Associated with Stock Returns?," Review of Finance, European Finance Association, vol. 28(1), pages 75-106.
- Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
- Wang, Yudong & Ma, Feng & Wei, Yu & Wu, Chongfeng, 2016. "Forecasting realized volatility in a changing world: A dynamic model averaging approach," Journal of Banking & Finance, Elsevier, vol. 64(C), pages 136-149.
- Wang, Xunxiao & Wang, Yudong, 2019. "Volatility spillovers between crude oil and Chinese sectoral equity markets: Evidence from a frequency dynamics perspective," Energy Economics, Elsevier, vol. 80(C), pages 995-1009.
- Cochrane, John H., 2005.
"Financial Markets and the Real Economy,"
Foundations and Trends(R) in Finance, now publishers, vol. 1(1), pages 1-101, July.
- John Cochrane, 2005. "Financial Markets and the Real Economy," NBER Working Papers 11193, National Bureau of Economic Research, Inc.
- Faccini, Renato & Matin, Rastin & Skiadopoulos, George, 2023. "Dissecting climate risks: Are they reflected in stock prices?," Journal of Banking & Finance, Elsevier, vol. 155(C).
- Gong, Xue & Ye, Xin & Zhang, Weiguo & Zhang, Yue, 2023. "Predicting energy futures high-frequency volatility using technical indicators: The role of interaction," Energy Economics, Elsevier, vol. 119(C).
- Hong, Harrison & Li, Frank Weikai & Xu, Jiangmin, 2019. "Climate risks and market efficiency," Journal of Econometrics, Elsevier, vol. 208(1), pages 265-281.
- Mobarek, Asma & Mollah, Sabur & Keasey, Kevin, 2014. "A cross-country analysis of herd behavior in Europe," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 32(C), pages 107-127.
- Ergen, Ibrahim & Rizvanoghlu, Islam, 2016. "Asymmetric impacts of fundamentals on the natural gas futures volatility: An augmented GARCH approach," Energy Economics, Elsevier, vol. 56(C), pages 64-74.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- He, Mengxi & Zhang, Zhikai & Zhang, Yaojie, 2024. "Forecasting crude oil prices with global ocean temperatures," Energy, Elsevier, vol. 311(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gong, Xue & Ye, Xin & Zhang, Weiguo & Zhang, Yue, 2023. "Predicting energy futures high-frequency volatility using technical indicators: The role of interaction," Energy Economics, Elsevier, vol. 119(C).
- Li, Xiaodan & Gong, Xue & Ge, Futing & Huang, Jingjing, 2024. "Forecasting stock volatility using pseudo-out-of-sample information," International Review of Economics & Finance, Elsevier, vol. 90(C), pages 123-135.
- Xue Gong & Weiguo Zhang & Yuan Zhao & Xin Ye, 2023. "Forecasting stock volatility with a large set of predictors: A new forecast combination method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1622-1647, November.
- Xue Gong & Weiguo Zhang & Weijun Xu & Zhe Li, 2022. "Uncertainty index and stock volatility prediction: evidence from international markets," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-44, December.
- Wen, Danyan & He, Mengxi & Wang, Yudong & Zhang, Yaojie, 2024. "Forecasting crude oil market volatility: A comprehensive look at uncertainty variables," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1022-1041.
- Li, Zhao-Chen & Xie, Chi & Zeng, Zhi-Jian & Wang, Gang-Jin & Zhang, Ting, 2023. "Forecasting global stock market volatilities in an uncertain world," International Review of Financial Analysis, Elsevier, vol. 85(C).
- Yu, Xing & Li, Yanyan & Gong, Xue & Zhang, Nan, 2022. "Evaluating the performance of futures hedging using factors-driven realized volatility," International Review of Financial Analysis, Elsevier, vol. 84(C).
- Gong, Xue & Zhang, Weiguo & Wang, Junbo & Wang, Chao, 2022. "Investor sentiment and stock volatility: New evidence," International Review of Financial Analysis, Elsevier, vol. 80(C).
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
- Yi, Yongsheng & He, Mengxi & Zhang, Yaojie, 2022. "Out-of-sample prediction of Bitcoin realized volatility: Do other cryptocurrencies help?," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
- Ma, Feng & Li, Yu & Liu, Li & Zhang, Yaojie, 2018. "Are low-frequency data really uninformative? A forecasting combination perspective," The North American Journal of Economics and Finance, Elsevier, vol. 44(C), pages 92-108.
- Feng Ma & Yu Wei & Wang Chen & Feng He, 2018. "Forecasting the volatility of crude oil futures using high-frequency data: further evidence," Empirical Economics, Springer, vol. 55(2), pages 653-678, September.
- Fava, Santino Del & Gupta, Rangan & Pierdzioch, Christian & Rognone, Lavinia, 2024.
"Forecasting international financial stress: The role of climate risks,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 92(C).
- Santino Del Fava & Rangan Gupta & Christian Pierdzioch & Lavinia Rognone, 2023. "Forecasting International Financial Stress: The Role of Climate Risks," Working Papers 202329, University of Pretoria, Department of Economics.
- He, Mengxi & Wen, Danyan & Xing, Lu & Zhang, Yaojie, 2024. "Industry volatility concentration and the predictability of aggregate stock market volatility," International Review of Economics & Finance, Elsevier, vol. 95(C).
- Gong, Xue & Xu, Weijun & Li, Xiaodan & Gong, Xue, 2024. "Presidential economic approval rating and global foreign exchange market volatility," International Review of Financial Analysis, Elsevier, vol. 96(PB).
- Likun Lei & Yaojie Zhang & Yu Wei & Yi Zhang, 2021. "Forecasting the volatility of Chinese stock market: An international volatility index," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1336-1350, January.
- Xianfeng Hao & Yudong Wang, 2023. "Cloud cover and expected oil returns," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
- Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
- Li, Yan & Huynh, Luu Duc Toan & Xu, Yongan & Liang, Hao, 2023. "The forecast ability of a belief-based momentum indicator in full-day, daytime, and nighttime volatilities of Chinese oil futures," Energy Economics, Elsevier, vol. 127(PB).
- Zhang, Lixia & Luo, Qin & Guo, Xiaozhu & Umar, Muhammad, 2022. "Medium-term and long-term volatility forecasts for EUA futures with country-specific economic policy uncertainty indices," Resources Policy, Elsevier, vol. 77(C).
More about this item
Keywords
High-frequency data; Climate risk; Volatility prediction; Energy futures; Forecast combination;All these keywords.
JEL classification:
- G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224022400. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.