IDEAS home Printed from https://ideas.repec.org/p/col/000094/012323.html
   My bibliography  Save this paper

Bayesian Combination for Inflation Forecasts: The Effects of a Prior Based on Central Banks’ Estimates

Author

Listed:
  • Luis F. Melo Velandia
  • Rubén A. Loaiza Maya
  • Mauricio Villamizar-Villegas

Abstract

Typically, central banks use a variety of individual models (or a combination of models) when forecasting inflation rates. Most of these require excessive amounts of data, time, and computational power; all of which are scarce when monetary authorities meet to decide over policy interventions. In this paper we use a rolling Bayesian combination technique that considers inflation estimates by the staff of the Central Bank of Colombia during 2002-2011 as prior information. Our results show that: 1) the accuracy of individual models is improved by using a Bayesian shrinkage methodology, and 2) priors consisting of staff's estimates outperform all other priors that comprise equal or zero-vector weights. Consequently, our model provides readily available forecasts that exceed all individual models in terms of forecasting accuracy at every evaluated horizon.

Suggested Citation

  • Luis F. Melo Velandia & Rubén A. Loaiza Maya & Mauricio Villamizar-Villegas, 2014. "Bayesian Combination for Inflation Forecasts: The Effects of a Prior Based on Central Banks’ Estimates," Borradores de Economia 12323, Banco de la Republica.
  • Handle: RePEc:col:000094:012323
    as

    Download full text from publisher

    File URL: http://www.banrep.gov.co/sites/default/files/publicaciones/archivos/be_853.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    2. Gary Koop & Simon M. Potter, 2003. "Forecasting in large macroeconomic panels using Bayesian Model Averaging," Staff Reports 163, Federal Reserve Bank of New York.
    3. Kapetanios, George & Labhard, Vincent & Price, Simon, 2006. "Forecasting using predictive likelihood model averaging," Economics Letters, Elsevier, vol. 91(3), pages 373-379, June.
    4. Martha Misas Arango & Enrique López Enciso & Pablo Querubín Borrero, 2002. "La inflación en Colombia: una aproximación desde las redes neuronales," Revista ESPE - Ensayos Sobre Política Económica, Banco de la República, vol. 20(41-42), pages 143-214, June.
    5. Luis Fernando Melo & Martha Misas A., 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a Través de Mínimos Cuadrados Flexibles," Borradores de Economia 283, Banco de la Republica de Colombia.
    6. Luis Fernando Melo & Héctor Núñez, 2004. "Combinación de Pronósticos de la Inflación en Presencia de cambios Estructurales," Borradores de Economia 286, Banco de la Republica de Colombia.
    7. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
    8. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecasting Using Bayesian and Information-Theoretic Model Averaging: An Application to U.K. Inflation," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 33-41, January.
    9. Norberto Rodríguez & Patricia Siado, 2003. "Un Pronóstico No Paramétrico De La Inflación Colombiana," Borradores de Economia 3691, Banco de la Republica.
    10. Kirsten Thompson & Reneé van Eyden & Rangan Gupta, 2015. "Testing the Out-of-Sample Forecasting Ability of a Financial Conditions Index for South Africa," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(3), pages 486-501, May.
    11. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    12. Jana Eklund & Sune Karlsson, 2007. "Forecast Combination and Model Averaging Using Predictive Measures," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 329-363.
    13. Geweke, John & Whiteman, Charles, 2006. "Bayesian Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 1, pages 3-80, Elsevier.
    14. Wright, Jonathan H., 2008. "Bayesian Model Averaging and exchange rate forecasts," Journal of Econometrics, Elsevier, vol. 146(2), pages 329-341, October.
    15. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    16. Munir A. Jalil & Luis Fernando Melo, 2000. "Una Relación no Líneal entre Inflación y los Medios de Pago," Borradores de Economia 145, Banco de la Republica de Colombia.
    17. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
    18. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    19. Huseyin Kaya & M. Ege Yazgan, 2014. "Probability Forecasts of Macroaggregates in the Turkish Economy," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 50(2), pages 214-229, March.
    20. Qizhi He & Conglai Fan, 2015. "Forecasting Inflation in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(4), pages 689-700, July.
    21. Selen Başer Andiç & Hande Küçük & Fethi Öğünç, 2015. "Inflation Dynamics in Turkey: In Pursuit of a Domestic Cost Measure," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 51(2), pages 418-431, March.
    22. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    23. Kapetanios, George & Labhard, Vincent & Price, Simon, 2006. "Forecasting using predictive likelihood model averaging," Economics Letters, Elsevier, vol. 91(3), pages 373-379, June.
    24. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    25. Miguel I. Gómez & Eliana R. González & Luis F. Melo, 2012. "Forecasting Food Inflation in Developing Countries with Inflation Targeting Regimes," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(1), pages 153-173.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. D.V. Firsov & T.C. Chernyshevа, 2021. "Review of Successful Practices of Applying Nowcasting in Socio-Economic Forecasting," Journal of Applied Economic Research, Graduate School of Economics and Management, Ural Federal University, vol. 20(2), pages 269-293.
    2. Hassani, Hossein & Silva, Emmanuel Sirimal, 2018. "Forecasting UK consumer price inflation using inflation forecasts," Research in Economics, Elsevier, vol. 72(3), pages 367-378.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luis Fernando Melo & Rubén Albeiro Loaiza Maya, 2012. "Bayesian Forecast Combination for Inflation Using Rolling Windows: An Emerging Country Case," Borradores de Economia 705, Banco de la Republica de Colombia.
    2. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    3. Eliana González, 2010. "Bayesian Model Averaging. An Application to Forecast Inflation in Colombia," Borradores de Economia 7013, Banco de la Republica.
    4. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecast combination and the Bank of England's suite of statistical forecasting models," Economic Modelling, Elsevier, vol. 25(4), pages 772-792, July.
    5. David Jamieson Bolder & Yuliya Romanyuk, 2010. "Combining Canadian Interest Rate Forecasts," Palgrave Macmillan Books, in: Arjan B. Berkelaar & Joachim Coche & Ken Nyholm (ed.), Interest Rate Models, Asset Allocation and Quantitative Techniques for Central Banks and Sovereign Wealth Funds, chapter 1, pages 3-30, Palgrave Macmillan.
    6. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    7. Bec, Frédérique & Mogliani, Matteo, 2015. "Nowcasting French GDP in real-time with surveys and “blocked” regressions: Combining forecasts or pooling information?," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1021-1042.
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    10. Anne Sofie Jore & James Mitchell & Shaun P. Vahey, 2010. "Combining forecast densities from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 621-634.
    11. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    12. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    13. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    14. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    15. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    16. Katja Drechsel & Laurent Maurin, 2011. "Flow of conjunctural information and forecast of euro area economic activity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(3), pages 336-354, April.
    17. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    18. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
    19. Joshua Gallin & Randal Verbrugge, 2007. "Improving the CPI’s Age-Bias Adjustment: Leverage, Disaggregation and Model Averaging," Working Papers 411, U.S. Bureau of Labor Statistics.
    20. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.

    More about this item

    Keywords

    Bayesian shrinkage; inflation forecast combination; internal forecasts; rolling window estimation;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000094:012323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Clorith Angelica Bahos Olivera (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.