IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v58y2021i2d10.1007_s10614-020-10030-4.html
   My bibliography  Save this article

A Markov Decision Process Model for Optimal Trade of Options Using Statistical Data

Author

Listed:
  • Ali Nasir

    (University of Central Punjab)

  • Ambreen Khursheed

    (University of Central Punjab)

  • Kazim Ali

    (University of Central Punjab)

  • Faisal Mustafa

    (University of Central Punjab)

Abstract

This paper presents a Markov decision process model for calculating optimal decision policy regarding the trade of options assuming the American options trading system. The proposed model incorporates the conditional probabilities of option prices given various features (or factors) that affect those prices. The generation of such probabilities requires statistical data of the feature values as well as the option price values. Given the availability of statistical data, the paper explains how the Markov decision process model can be formulated and solved using ‘value iteration’ to calculate optimal decision policy that maximizes the accumulative return. The model has been applied to the data of Microsoft and Coca Cola options. Analysis in the case study reveals how optimal decision policy can be interpreted and used for making sales or purchase decisions regarding various options at hand. The results indicate that there are significant advantages for the financial community including, but not limited to the investors who utilize our proposed approach.

Suggested Citation

  • Ali Nasir & Ambreen Khursheed & Kazim Ali & Faisal Mustafa, 2021. "A Markov Decision Process Model for Optimal Trade of Options Using Statistical Data," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 327-346, August.
  • Handle: RePEc:kap:compec:v:58:y:2021:i:2:d:10.1007_s10614-020-10030-4
    DOI: 10.1007/s10614-020-10030-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-020-10030-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-020-10030-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    2. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    3. Jinglu Jiang & Congming Mu & Juan Peng & Jinqiang Yang, 2019. "Real options maximizing survival probability under incomplete markets," Quantitative Finance, Taylor & Francis Journals, vol. 19(11), pages 1921-1931, November.
    4. Rubinstein, Mark, 1985. "Nonparametric Tests of Alternative Option Pricing Models Using All Reported Trades and Quotes on the 30 Most Active CBOE Option Classes from August 23, 1976 through August 31, 1978," Journal of Finance, American Finance Association, vol. 40(2), pages 455-480, June.
    5. Wen-Tso Huang & Cheng-Chang Lu, 2018. "An enhanced absorbing Markov chain model for predicting TAIEX Index Futures," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(1), pages 133-146, January.
    6. Mark Broadie & Jérôme Detemple, 1997. "The Valuation of American Options on Multiple Assets," Mathematical Finance, Wiley Blackwell, vol. 7(3), pages 241-286, July.
    7. Brennan, Michael J & Schwartz, Eduardo S, 1977. "The Valuation of American Put Options," Journal of Finance, American Finance Association, vol. 32(2), pages 449-462, May.
    8. Jinsha Zhao, 2018. "American Option Valuation Methods," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(5), pages 1-13, May.
    9. Simonato, Jean-Guy, 2011. "Computing American option prices in the lognormal jump–diffusion framework with a Markov chain," Finance Research Letters, Elsevier, vol. 8(4), pages 220-226.
    10. Lars Stentoft, 2004. "Convergence of the Least Squares Monte Carlo Approach to American Option Valuation," Management Science, INFORMS, vol. 50(9), pages 1193-1203, September.
    11. John van der Hoek & Robert J. Elliott, 2012. "American option prices in a Markov chain market model," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 28(1), pages 35-59, January.
    12. He, Xin-Jiang & Zhu, Song-Ping, 2016. "An analytical approximation formula for European option pricing under a new stochastic volatility model with regime-switching," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 77-85.
    13. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    14. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    15. Lars Stentoft, 2004. "Assessing the Least Squares Monte-Carlo Approach to American Option Valuation," Review of Derivatives Research, Springer, vol. 7(2), pages 129-168, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Len Patrick Dominic M. Garces & Gerald H. L. Cheang, 2021. "A numerical approach to pricing exchange options under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2025-2054, December.
    2. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    3. Minqiang Li, 2010. "A quasi-analytical interpolation method for pricing American options under general multi-dimensional diffusion processes," Review of Derivatives Research, Springer, vol. 13(2), pages 177-217, July.
    4. Jeechul Woo & Chenru Liu & Jaehyuk Choi, 2024. "Leave‐one‐out least squares Monte Carlo algorithm for pricing Bermudan options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(8), pages 1404-1428, August.
    5. Seiji Harikae & James S. Dyer & Tianyang Wang, 2021. "Valuing Real Options in the Volatile Real World," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 171-189, January.
    6. Andrea Gamba & Nicola Fusari, 2009. "Valuing Modularity as a Real Option," Management Science, INFORMS, vol. 55(11), pages 1877-1896, November.
    7. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    8. Carmen Schiel & Simon Glöser-Chahoud & Frank Schultmann, 2019. "A real option application for emission control measures," Journal of Business Economics, Springer, vol. 89(3), pages 291-325, April.
    9. Locatelli, Giorgio & Mancini, Mauro & Lotti, Giovanni, 2020. "A simple-to-implement real options method for the energy sector," Energy, Elsevier, vol. 197(C).
    10. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    11. Mario Cerrato & Kan Kwok Cheung, 2007. "Valuing American Style Options by Least Squares Methods," Money Macro and Finance (MMF) Research Group Conference 2006 49, Money Macro and Finance Research Group.
    12. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    13. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    14. Nordahl, Helge A., 2008. "Valuation of life insurance surrender and exchange options," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 909-919, June.
    15. Mombello, Bruno & Olsina, Fernando & Pringles, Rolando, 2023. "Valuing photovoltaic power plants by compound real options," Renewable Energy, Elsevier, vol. 216(C).
    16. Ravi Kashyap, 2016. "Options as Silver Bullets: Valuation of Term Loans, Inventory Management, Emissions Trading and Insurance Risk Mitigation using Option Theory," Papers 1609.01274, arXiv.org, revised Mar 2022.
    17. Yanhui Shen, 2023. "American Option Pricing using Self-Attention GRU and Shapley Value Interpretation," Papers 2310.12500, arXiv.org.
    18. Chen Liu & Henry Schellhorn & Qidi Peng, 2019. "American Option Pricing With Regression: Convergence Analysis," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-31, December.
    19. Leif Andersen & Mark Broadie, 2004. "Primal-Dual Simulation Algorithm for Pricing Multidimensional American Options," Management Science, INFORMS, vol. 50(9), pages 1222-1234, September.
    20. Philipp N. Baecker, 2007. "Real Options and Intellectual Property," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-540-48264-2, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:58:y:2021:i:2:d:10.1007_s10614-020-10030-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.