IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v27y2012i2p319-341.html
   My bibliography  Save this article

Multi–regime models for nonlinear nonstationary time series

Author

Listed:
  • Francesco Battaglia
  • Mattheos Protopapas

Abstract

No abstract is available for this item.

Suggested Citation

  • Francesco Battaglia & Mattheos Protopapas, 2012. "Multi–regime models for nonlinear nonstationary time series," Computational Statistics, Springer, vol. 27(2), pages 319-341, June.
  • Handle: RePEc:spr:compst:v:27:y:2012:i:2:p:319-341
    DOI: 10.1007/s00180-011-0259-z
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00180-011-0259-z
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00180-011-0259-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007. "Contemporaneous threshold autoregressive models: Estimation, testing and forecasting," Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
    2. Baragona, R. & Battaglia, F. & Cucina, D., 2004. "Fitting piecewise linear threshold autoregressive models by means of genetic algorithms," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 277-295, September.
    3. Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2008. "Economic and financial crises and the predictability of U.S. stock returns," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 468-480, June.
    4. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    5. Kim, Dongcheol & Kon, Stanley J., 1999. "Structural change and time dependence in models of stock returns," Journal of Empirical Finance, Elsevier, vol. 6(3), pages 283-308, September.
    6. Lu, Yang K. & Perron, Pierre, 2010. "Modeling and forecasting stock return volatility using a random level shift model," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 138-156, January.
    7. Wu, Berlin & Chang, Chih-Li, 2002. "Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 38(3), pages 315-330, January.
    8. Chatterjee, Sangit & Laudato, Matthew & Lynch, Lucy A., 1996. "Genetic algorithms and their statistical applications: an introduction," Computational Statistics & Data Analysis, Elsevier, vol. 22(6), pages 633-651, October.
    9. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    10. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    11. Davis, Richard A. & Lee, Thomas C.M. & Rodriguez-Yam, Gabriel A., 2006. "Structural Break Estimation for Nonstationary Time Series Models," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 223-239, March.
    12. Lundbergh, Stefan & Terasvirta, Timo & van Dijk, Dick, 2003. "Time-Varying Smooth Transition Autoregressive Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 104-121, January.
    13. Gary Koop & Simon M. Potter, 2001. "Are apparent findings of nonlinearity due to structural instability in economic time series?," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-38.
    14. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    15. Francesco Battaglia & Mattheos K. Protopapas, 2011. "Time‐varying multi‐regime models fitting by genetic algorithms," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 237-252, May.
    16. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    17. Joseph Tadjuidje Kamgaing & Hernando Ombao & Richard A. Davis, 2009. "Autoregressive processes with data‐driven regime switching," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(5), pages 505-533, September.
    18. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
    19. Carlo Gaetan, 2000. "Subset ARMA Model Identification Using Genetic Algorithms," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(5), pages 559-570, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Battaglia & Mattheos Protopapas, 2012. "An analysis of global warming in the Alpine region based on nonlinear nonstationary time series models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 315-334, August.
    2. Domenico Cucina & Manuel Rizzo & Eugen Ursu, 2018. "Identification of multiregime periodic autotregressive models by genetic algorithms," Post-Print hal-03187870, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francesco Battaglia & Mattheos Protopapas, 2012. "An analysis of global warming in the Alpine region based on nonlinear nonstationary time series models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 21(3), pages 315-334, August.
    2. Francesco Battaglia & Mattheos K. Protopapas, 2010. "Multi-regime models for nonlinear nonstationary time series," Working Papers 026, COMISEF.
    3. Francesco Battaglia & Mattheos K. Protopapas, 2011. "Time‐varying multi‐regime models fitting by genetic algorithms," Journal of Time Series Analysis, Wiley Blackwell, vol. 32(3), pages 237-252, May.
    4. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    5. Gary Koop & Simon M. Potter, 2007. "A flexible approach to parametric inference in nonlinear time series models," Staff Reports 285, Federal Reserve Bank of New York.
    6. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    7. Fu, Zhonghao & Hong, Yongmiao, 2019. "A model-free consistent test for structural change in regression possibly with endogeneity," Journal of Econometrics, Elsevier, vol. 211(1), pages 206-242.
    8. Koo, Chao, 2018. "Essays on functional coefficient models," Other publications TiSEM ba87b8a5-3c55-40ec-967d-9, Tilburg University, School of Economics and Management.
    9. Richard A. Davis & Thomas C. M. Lee & Gabriel A. Rodriguez‐Yam, 2008. "Break Detection for a Class of Nonlinear Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(5), pages 834-867, September.
    10. repec:hal:journl:peer-00732535 is not listed on IDEAS
    11. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    12. Maringer Dietmar G. & Meyer Mark, 2008. "Smooth Transition Autoregressive Models -- New Approaches to the Model Selection Problem," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(1), pages 1-21, March.
    13. Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
    14. Gabriel Rodríguez & Roxana Tramontana Tocto, 2015. "Application of a Short Memory Model With Random Level Shifts to the Volatility of Latin American Stock Market Returns," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 52(2), pages 185-211, November.
    15. Gabriel Rodríguez, 2015. "Modeling Latin-American Stock Markets Volatility: Varying Probabilities and Mean Reversion in a Random Level Shifts Model," Documentos de Trabajo / Working Papers 2015-403, Departamento de Economía - Pontificia Universidad Católica del Perú.
    16. Andrés Herrera Aramburú & Gabriel Rodríguez, 2016. "Volatility of stock market and exchange rate returns in Peru: Long memory or short memory with level shifts?," International Journal of Monetary Economics and Finance, Inderscience Enterprises Ltd, vol. 9(1), pages 45-66.
    17. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    18. Demian Pouzo & Zacharias Psaradakis & Martin Sola, 2022. "Maximum Likelihood Estimation in Markov Regime‐Switching Models With Covariate‐Dependent Transition Probabilities," Econometrica, Econometric Society, vol. 90(4), pages 1681-1710, July.
    19. Winker, Peter & Gilli, Manfred, 2004. "Applications of optimization heuristics to estimation and modelling problems," Computational Statistics & Data Analysis, Elsevier, vol. 47(2), pages 211-223, September.
    20. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    21. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:27:y:2012:i:2:p:319-341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.