IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.08712.html
   My bibliography  Save this paper

Machine learning and economic forecasting: the role of international trade networks

Author

Listed:
  • Thiago C. Silva
  • Paulo V. B. Wilhelm
  • Diego R. Amancio

Abstract

This study examines the effects of de-globalization trends on international trade networks and their role in improving forecasts for economic growth. Using section-level trade data from nearly 200 countries from 2010 to 2022, we identify significant shifts in the network topology driven by rising trade policy uncertainty. Our analysis highlights key global players through centrality rankings, with the United States, China, and Germany maintaining consistent dominance. Using a horse race of supervised regressors, we find that network topology descriptors evaluated from section-specific trade networks substantially enhance the quality of a country's GDP growth forecast. We also find that non-linear models, such as Random Forest, XGBoost, and LightGBM, outperform traditional linear models used in the economics literature. Using SHAP values to interpret these non-linear model's predictions, we find that about half of most important features originate from the network descriptors, underscoring their vital role in refining forecasts. Moreover, this study emphasizes the significance of recent economic performance, population growth, and the primary sector's influence in shaping economic growth predictions, offering novel insights into the intricacies of economic growth forecasting.

Suggested Citation

  • Thiago C. Silva & Paulo V. B. Wilhelm & Diego R. Amancio, 2024. "Machine learning and economic forecasting: the role of international trade networks," Papers 2404.08712, arXiv.org.
  • Handle: RePEc:arx:papers:2404.08712
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.08712
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chuku, Chuku & Simpasa, Anthony & Oduor, Jacob, 2019. "Intelligent forecasting of economic growth for developing economies," International Economics, Elsevier, vol. 159(C), pages 74-93.
    2. Gonzalo Camba-Mendez & George Kapetanios & Richard J. Smith & Martin R. Weale, 2001. "An automatic leading indicator of economic activity: forecasting GDP growth for European countries," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-37.
    3. Jose Maria Da Rocha & Diego Restuccia, 2006. "The Role of Agriculture in Aggregate Business Cycles," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 9(3), pages 455-482, July.
    4. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    5. Cesar A. Hidalgo & Ricardo Hausmann, 2009. "The Building Blocks of Economic Complexity," Papers 0909.3890, arXiv.org.
    6. Mert Demirer & Francis X. Diebold & Laura Liu & Kamil Yilmaz, 2018. "Estimating global bank network connectedness," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(1), pages 1-15, January.
    7. Butkiewicz, James L. & Yanikkaya, Halit, 2006. "Institutional quality and economic growth: Maintenance of the rule of law or democratic institutions, or both?," Economic Modelling, Elsevier, vol. 23(4), pages 648-661, July.
    8. Gao, Cuixia & Sun, Mei & Shen, Bo, 2015. "Features and evolution of international fossil energy trade relationships: A weighted multilayer network analysis," Applied Energy, Elsevier, vol. 156(C), pages 542-554.
    9. Chuluun, Tuugi & Prevost, Andrew & Upadhyay, Arun, 2017. "Firm network structure and innovation," Journal of Corporate Finance, Elsevier, vol. 44(C), pages 193-214.
    10. Mario Crucini & Ayhan Kose & Christopher Otrok, 2011. "What are the driving forces of international business cycles?," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 14(1), pages 156-175, January.
    11. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    12. Marilyne Huchet†Bourdon & Chantal Le Mouël & Mariana Vijil, 2018. "The relationship between trade openness and economic growth: Some new insights on the openness measurement issue," The World Economy, Wiley Blackwell, vol. 41(1), pages 59-76, January.
    13. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    14. Edward L. Glaeser & Gary S. Becker & Kevin M. Murphy, 1999. "Population and Economic Growth," American Economic Review, American Economic Association, vol. 89(2), pages 145-149, May.
    15. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    16. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    17. Tse, Chi K. & Liu, Jing & Lau, Francis C.M., 2010. "A network perspective of the stock market," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 659-667, September.
    18. Silva, Thiago Christiano & Souza, Sergio Rubens Stancato & Tabak, Benjamin Miranda, 2017. "Monitoring vulnerability and impact diffusion in financial networks," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 109-135.
    19. Esfahani, Hadi Salehi & Ramirez, Maria Teresa, 2003. "Institutions, infrastructure, and economic growth," Journal of Development Economics, Elsevier, vol. 70(2), pages 443-477, April.
    20. Silva, Thiago Christiano & Guerra, Solange Maria & da Silva, Michel Alexandre & Tabak, Benjamin Miranda, 2020. "Micro-level transmission of monetary policy shocks: The trading book channel," Journal of Economic Behavior & Organization, Elsevier, vol. 179(C), pages 279-298.
    21. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    22. Zhong, Weiqiong & An, Haizhong & Shen, Lei & Fang, Wei & Gao, Xiangyun & Dong, Di, 2017. "The roles of countries in the international fossil fuel trade: An emergy and network analysis," Energy Policy, Elsevier, vol. 100(C), pages 365-376.
    23. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    24. Hu, Xiaoqian & Wang, Chao & Lim, Ming K. & Chen, Wei-Qiang, 2020. "Characteristics of the global copper raw materials and scrap trade systems and the policy impacts of China's import ban," Ecological Economics, Elsevier, vol. 172(C).
    25. D. Garlaschelli & M. I. Loffredo, 2004. "Fitness-dependent topological properties of the World Trade Web," Papers cond-mat/0403051, arXiv.org, revised Oct 2004.
    26. Silva, Thiago Christiano & Wilhelm, Paulo Victor Berri & Tabak, Benjamin Miranda, 2023. "The effect of interconnectivity on stock returns during the Global Financial Crisis," The North American Journal of Economics and Finance, Elsevier, vol. 67(C).
    27. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dennis Kant & Andreas Pick & Jasper de Winter, 2022. "Nowcasting GDP using machine learning methods," Working Papers 754, DNB.
    2. Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
    3. James Chapman & Ajit Desai, 2021. "Using Payments Data to Nowcast Macroeconomic Variables During the Onset of COVID-19," Staff Working Papers 21-2, Bank of Canada.
    4. Samuel N. Cohen & Silvia Lui & Will Malpass & Giulia Mantoan & Lars Nesheim & 'Aureo de Paula & Andrew Reeves & Craig Scott & Emma Small & Lingyi Yang, 2023. "Nowcasting with signature methods," Papers 2305.10256, arXiv.org.
    5. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    6. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    7. Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
    8. Isaac K. Ofori & Camara K. Obeng & Simplice A. Asongu, 2024. "What Really Drives Economic Growth in Sub-Saharan Africa? Evidence from the Lasso Regularization and Inferential Techniques," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(1), pages 144-179, March.
    9. Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
    10. Richardson, Adam & van Florenstein Mulder, Thomas & Vehbi, Tuğrul, 2021. "Nowcasting GDP using machine-learning algorithms: A real-time assessment," International Journal of Forecasting, Elsevier, vol. 37(2), pages 941-948.
    11. Ádám Csápai, 0000. "Macroeconomic Forecasting Using Machine Learning: A Case of Slovakia," Proceedings of Economics and Finance Conferences 14115967, International Institute of Social and Economic Sciences.
    12. Pijush Kanti Das & Prabir Kumar Das, 2024. "Forecasting and Analyzing Predictors of Inflation Rate: Using Machine Learning Approach," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 22(2), pages 493-517, June.
    13. Juan Tenorio & Wilder Perez, 2024. "Monthly GDP nowcasting with Machine Learning and Unstructured Data," Papers 2402.04165, arXiv.org.
    14. Tamara, Novian & Dwi Muchisha, Nadya & Andriansyah, Andriansyah & Soleh, Agus M, 2020. "Nowcasting Indonesia’s GDP Growth Using Machine Learning Algorithms," MPRA Paper 105235, University Library of Munich, Germany.
    15. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    16. Kitamura, Toshihiko & Managi, Shunsuke, 2017. "Driving force and resistance: Network feature in oil trade," Applied Energy, Elsevier, vol. 208(C), pages 361-375.
    17. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    18. Gui-Hua Lin & Zhen-Ping Yang & Hai-An Yin & Jin Zhang, 2023. "A dual-based stochastic inexact algorithm for a class of stochastic nonsmooth convex composite problems," Computational Optimization and Applications, Springer, vol. 86(2), pages 669-710, November.
    19. Andrei Dubovik & Adam Elbourne & Bram Hendriks & Mark Kattenberg, 2022. "Forecasting World Trade Using Big Data and Machine Learning Techniques," CPB Discussion Paper 441, CPB Netherlands Bureau for Economic Policy Analysis.
    20. Daniel Borup & Philippe Goulet Coulombe & Erik Christian Montes Schütte & David E. Rapach & Sander Schwenk-Nebbe, 2022. "The Anatomy of Out-of-Sample Forecasting Accuracy," FRB Atlanta Working Paper 2022-16, Federal Reserve Bank of Atlanta.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.08712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.