IDEAS home Printed from https://ideas.repec.org/p/chb/bcchwp/520.html
   My bibliography  Save this paper

When RSI met the Binomial-Tree

Author

Listed:
  • Rodrigo Alfaro
  • Andrés Sagner

Abstract

In this paper we provide a useful method to forecast one the most popular technical analysis tool: the Relative Strength Index (RSI). This method is based on the assumption that stock price can be characterized by the standard binomial model widely used for pricing option. The algorithm is as simple as to code a standard European option. An empirical application to the exchange rate chilean peso and dollar is provided. The results show that the proposed method is superior to the usual ARMA modeling.

Suggested Citation

  • Rodrigo Alfaro & Andrés Sagner, 2009. "When RSI met the Binomial-Tree," Working Papers Central Bank of Chile 520, Central Bank of Chile.
  • Handle: RePEc:chb:bcchwp:520
    as

    Download full text from publisher

    File URL: https://www.bcentral.cl/documents/33528/133326/DTBC_520.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ullah, Aman, 2004. "Finite Sample Econometrics," OUP Catalogue, Oxford University Press, number 9780198774488.
    2. Ana María Abarca G. & Felipe Alarcón G. & Pablo Pincheira B. & Jorge Selaive C., 2007. "Nominal Exchange Rate in Chile: Predictions based on technical analysis," Journal Economía Chilena (The Chilean Economy), Central Bank of Chile, vol. 10(2), pages 57-80, August.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfaro, Rodrigo & Sagner, Andres, 2010. "Financial Forecast for the Relative Strength Index," MPRA Paper 25913, University Library of Munich, Germany, revised Apr 2010.
    2. silvia Muzzioli & Alessio Ruggieri, 2013. "Option Implied Trees and Implied Moments," Department of Economics (DEMB) 0015, University of Modena and Reggio Emilia, Department of Economics "Marco Biagi".
    3. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    4. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    5. Nelson Areal & Artur Rodrigues & Manuel Armada, 2008. "On improving the least squares Monte Carlo option valuation method," Review of Derivatives Research, Springer, vol. 11(1), pages 119-151, March.
    6. repec:mod:depeco:0015 is not listed on IDEAS
    7. Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    8. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    9. Rui Fan & Stephen J. Taylor & Matteo Sandri, 2018. "Density forecast comparisons for stock prices, obtained from high‐frequency returns and daily option prices," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(1), pages 83-103, January.
    10. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    11. Dybvig, Philip H. & Gong, Ning & Schwartz, Rachel, 2000. "Bias of Damage Awards and Free Options in Securities Litigation," Journal of Financial Intermediation, Elsevier, vol. 9(2), pages 149-168, April.
    12. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    13. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    14. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    15. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    16. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
    17. Pringles, Rolando & Olsina, Fernando & Penizzotto, Franco, 2020. "Valuation of defer and relocation options in photovoltaic generation investments by a stochastic simulation-based method," Renewable Energy, Elsevier, vol. 151(C), pages 846-864.
    18. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    19. Collan, Mikael, 2008. "New Method for Real Option Valuation Using Fuzzy Numbers," Working Papers 466, IAMSR, Åbo Akademi.
    20. Grosen, Anders & Lochte Jorgensen, Peter, 2000. "Fair valuation of life insurance liabilities: The impact of interest rate guarantees, surrender options, and bonus policies," Insurance: Mathematics and Economics, Elsevier, vol. 26(1), pages 37-57, February.
    21. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chb:bcchwp:520. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alvaro Castillo (email available below). General contact details of provider: https://edirc.repec.org/data/bccgvcl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.