IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v63y2015i5p1058-1076.html
   My bibliography  Save this article

Adaptive Execution: Exploration and Learning of Price Impact

Author

Listed:
  • Beomsoo Park

    (Stanford University, Stanford, California 94305)

  • Benjamin Van Roy

    (Stanford University, Stanford, California 94305)

Abstract

We consider a model in which a trader aims to maximize expected risk-adjusted profit while trading a single security. In our model, each price change is a linear combination of observed factors, impact resulting from the trader’s current and prior activity, and unpredictable random effects. The trader must learn coefficients of a price impact model while trading. We propose a new method for simultaneous execution and learning—the confidence-triggered regularized adaptive certainty equivalent (CTRACE) policy—and establish a poly-logarithmic finite-time expected regret bound. In addition, we demonstrate via Monte Carlo simulation that CTRACE outperforms the certainty equivalent policy and a recently proposed reinforcement learning algorithm that is designed to explore efficiently in linear-quadratic control problems.

Suggested Citation

  • Beomsoo Park & Benjamin Van Roy, 2015. "Adaptive Execution: Exploration and Learning of Price Impact," Operations Research, INFORMS, vol. 63(5), pages 1058-1076, October.
  • Handle: RePEc:inm:oropre:v:63:y:2015:i:5:p:1058-1076
    DOI: 10.1287/opre.2015.1415
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2015.1415
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2015.1415?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hasbrouck, Joel, 1991. "Measuring the Information Content of Stock Trades," Journal of Finance, American Finance Association, vol. 46(1), pages 179-207, March.
    2. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    3. Alfonso Dufour & Robert F. Engle, 2000. "Time and the Price Impact of a Trade," Journal of Finance, American Finance Association, vol. 55(6), pages 2467-2498, December.
    4. David B. Brown & James E. Smith, 2011. "Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds," Management Science, INFORMS, vol. 57(10), pages 1752-1770, October.
    5. Gur Huberman & Werner Stanzl, 2004. "Price Manipulation and Quasi-Arbitrage," Econometrica, Econometric Society, vol. 72(4), pages 1247-1275, July.
    6. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    7. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    8. Aurelien Alfonsi & Antje Fruth & Alexander Schied, 2010. "Optimal execution strategies in limit order books with general shape functions," Quantitative Finance, Taylor & Francis Journals, vol. 10(2), pages 143-157.
    9. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    10. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    11. Jim Gatheral, 2010. "No-dynamic-arbitrage and market impact," Quantitative Finance, Taylor & Francis Journals, vol. 10(7), pages 749-759.
    12. Ioanid Rosu, 2009. "A Dynamic Model of the Limit Order Book," Post-Print hal-00515873, HAL.
    13. Ioanid Rosu, 2009. "A Dynamic Model of the Limit Order Book," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4601-4641, November.
    14. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    2. Yan, Tingjin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Portfolio liquidation with delayed information," Economic Modelling, Elsevier, vol. 126(C).
    3. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    2. Beomsoo Park & Benjamin Van Roy, 2012. "Adaptive Execution: Exploration and Learning of Price Impact," Papers 1207.6423, arXiv.org.
    3. Seungki Min & Costis Maglaras & Ciamac C. Moallemi, 2018. "Cross-Sectional Variation of Intraday Liquidity, Cross-Impact, and their Effect on Portfolio Execution," Papers 1811.05524, arXiv.org.
    4. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2013. "Limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1709-1742, November.
    5. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 4-2015, January-A.
    6. Danny Lo, 2015. "Essays in Market Microstructure and Investor Trading," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 22, July-Dece.
    7. Lo, Danny K. & Hall, Anthony D., 2015. "Resiliency of the limit order book," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 222-244.
    8. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    9. Gerry Tsoukalas & Jiang Wang & Kay Giesecke, 2019. "Dynamic Portfolio Execution," Management Science, INFORMS, vol. 67(5), pages 2015-2040, May.
    10. Aurélien Alfonsi & Pierre Blanc, 2016. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Post-Print hal-00971369, HAL.
    11. Sadoghi, Amirhossein & Vecer, Jan, 2022. "Optimal liquidation problem in illiquid markets," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1050-1066.
    12. Antje Fruth & Torsten Schöneborn & Mikhail Urusov, 2014. "Optimal Trade Execution And Price Manipulation In Order Books With Time-Varying Liquidity," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 651-695, October.
    13. Nico Achtsis & Dirk Nuyens, 2013. "A Monte Carlo method for optimal portfolio executions," Papers 1312.5919, arXiv.org.
    14. Aur'elien Alfonsi & Pierre Blanc, 2014. "Dynamic optimal execution in a mixed-market-impact Hawkes price model," Papers 1404.0648, arXiv.org, revised Jun 2015.
    15. Aur'elien Alfonsi & Pierre Blanc, 2015. "Extension and calibration of a Hawkes-based optimal execution model," Papers 1506.08740, arXiv.org.
    16. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    17. Amirhossein Sadoghi & Jan Vecer, 2022. "Optimal liquidation problem in illiquid markets," Post-Print hal-03696768, HAL.
    18. Frank McGroarty & Ash Booth & Enrico Gerding & V. L. Raju Chinthalapati, 2019. "High frequency trading strategies, market fragility and price spikes: an agent based model perspective," Annals of Operations Research, Springer, vol. 282(1), pages 217-244, November.
    19. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:63:y:2015:i:5:p:1058-1076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.