L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
- Andersen T. G & Bollerslev T. & Diebold F. X & Labys P., 2001. "The Distribution of Realized Exchange Rate Volatility," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 42-55, March.
- Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016.
"Identifying Latent Structures in Panel Data,"
Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
- Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2014. "Identifying Latent Structures in Panel Data," Working Papers 07-2014, Singapore Management University, School of Economics.
- Liangjun Su & Zhentao Shi & Peter C.B. Phillips, 2014. "Identifying Latent Structures in Panel Data," Cowles Foundation Discussion Papers 1965, Cowles Foundation for Research in Economics, Yale University.
- Diebold, Francis X. & Shin, Minchul, 2019.
"Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially Egalitarian Lasso and its Derivatives," PIER Working Paper Archive 18-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2018.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives," NBER Working Papers 24967, National Bureau of Economic Research, Inc.
- Charalampos Stasinakis & Georgios Sermpinis & Konstantinos Theofilatos & Andreas Karathanasopoulos, 2016. "Forecasting US Unemployment with Radial Basis Neural Networks, Kalman Filters and Support Vector Regressions," Computational Economics, Springer;Society for Computational Economics, vol. 47(4), pages 569-587, April.
- Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Thibaut Lamadon & Elena Manresa & Stephane Bonhomme, 2016.
"Discretizing Unobserved Heterogeneity,"
2016 Meeting Papers
1536, Society for Economic Dynamics.
- Bonhomme, Stéphane & Lamadon, Thibaut & Manresa, Elena, 2017. "Discretizing Unobserved Heterogeneity," Working Paper Series 2017:21, IFAU - Institute for Evaluation of Labour Market and Education Policy.
- Stéphane Bonhomme & Thibaut Lamadon & Elena Manresa, 2017. "Discretizing unobserved heterogeneity," IFS Working Papers W17/03, Institute for Fiscal Studies.
- St'ephane Bonhomme Thibaut Lamadon Elena Manresa, 2021. "Discretizing Unobserved Heterogeneity," Papers 2102.02124, arXiv.org.
- Stéphane Bonhomme & Elena Manresa, 2015.
"Grouped Patterns of Heterogeneity in Panel Data,"
Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
- Stéphane Bonhomme & Elena Manresa, 2012. "Grouped Patterns of Heterogeneity in Panel Data," Working Papers wp2012_1208, CEMFI.
- Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
- Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
- Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
- Ang, Andrew & Bekaert, Geert & Wei, Min, 2007.
"Do macro variables, asset markets, or surveys forecast inflation better?,"
Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
- Andrew Ang & Geert Bekaert & Min Wei, 2005. "Do Macro Variables, Asset Markets or Surveys Forecast Inflation Better?," NBER Working Papers 11538, National Bureau of Economic Research, Inc.
- Andrew Ang & Geert Bekaert & Min Wei, 2006. "Do macro variables, asset markets, or surveys forecast inflation better?," Finance and Economics Discussion Series 2006-15, Board of Governors of the Federal Reserve System (U.S.).
- Steven Lehrer & Tian Xie, 2017.
"Box Office Buzz: Does Social Media Data Steal the Show from Model Uncertainty When Forecasting for Hollywood?,"
The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 749-755, December.
- Steven Lehrer & Tian Xie, 2016. "Box Office Buzz: Does Social Media Data Steal the Show from Model Uncertainty When Forecasting for Hollywood?," NBER Working Papers 22959, National Bureau of Economic Research, Inc.
- repec:taf:jnlbes:v:30:y:2012:i:2:p:212-228 is not listed on IDEAS
- Vogt, Michael & Linton, Oliver, 2020.
"Multiscale clustering of nonparametric regression curves,"
Journal of Econometrics, Elsevier, vol. 216(1), pages 305-325.
- Michael Vogt & Oliver Linton, 2018. "Multiscale clustering of nonparametric regression curves," CeMMAP working papers CWP08/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ravi Jagannathan & Tongshu Ma, 2003.
"Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps,"
Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
- Ravi Jagannathan & Tongshu Ma, 2002. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," NBER Working Papers 8922, National Bureau of Economic Research, Inc.
- Evandro Konzen & Flavio A. Ziegelmann, 2016. "LASSO‐Type Penalties for Covariate Selection and Forecasting in Time Series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(7), pages 592-612, November.
- Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
- Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
- Su, Liangjun & Ju, Gaosheng, 2018. "Identifying latent grouped patterns in panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 554-573.
- Capistrán, Carlos & Timmermann, Allan, 2009.
"Forecast Combination With Entry and Exit of Experts,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
- Timmermann Allan & Capistrán Carlos, 2006. "Forecast Combination with Entry and Exit of Experts," Working Papers 2006-08, Banco de México.
- Carlos Capistrán & Allan Timmermann, 2008. "Forecast Combination With Entry and Exit of Experts," CREATES Research Papers 2008-55, Department of Economics and Business Economics, Aarhus University.
- Claeskens, Gerda & Magnus, Jan R. & Vasnev, Andrey L. & Wang, Wendun, 2016.
"The forecast combination puzzle: A simple theoretical explanation,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 754-762.
- Gerda Claeskens & Jan Magnus & Andrey Vasnev & Wendun Wang, 2014. "The Forecast Combination Puzzle: A Simple Theoretical Explanation," Tinbergen Institute Discussion Papers 14-127/III, Tinbergen Institute.
- Gerda Claeskens & Jan Magnus & Andrey Vasnev & Wendun Wang, 2016. "The forecast combination puzzle: a simple theoretical explanation," Working Papers of Department of Decision Sciences and Information Management, Leuven 532152, KU Leuven, Faculty of Economics and Business (FEB), Department of Decision Sciences and Information Management, Leuven.
- David Disatnik & Saggi Katz, 2012. "Portfolio Optimization Using a Block Structure for the Covariance Matrix," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 39(5-6), pages 806-843, June.
- Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015.
"Optimal combination of survey forecasts,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
- Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & De Mol, Christine & Conflitti, Cristina, 2012. "Optimal Combination of Survey Forecasts," CEPR Discussion Papers 9096, C.E.P.R. Discussion Papers.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2022.
"Optimal and robust combination of forecasts via constrained optimization and shrinkage,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 97-116.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2020. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Discussion Papers LFIN 2020006, Université catholique de Louvain, Louvain Finance (LFIN).
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2021. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Reprints LFIN 2021014, Université catholique de Louvain, Louvain Finance (LFIN).
- A. Belloni & D. Chen & V. Chernozhukov & C. Hansen, 2012.
"Sparse Models and Methods for Optimal Instruments With an Application to Eminent Domain,"
Econometrica, Econometric Society, vol. 80(6), pages 2369-2429, November.
- Alexandre Belloni & D. Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse models and methods for optimal instruments with an application to eminent domain," CeMMAP working papers CWP31/10, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Daniel Chen & Victor Chernozhukov & Christian Hansen, 2010. "Sparse Models and Methods for Optimal Instruments with an Application to Eminent Domain," Papers 1010.4345, arXiv.org, revised Apr 2015.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Michael Vogt & Oliver Linton, 2017. "Classification of non-parametric regression functions in longitudinal data models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 5-27, January.
- Timmermann, Allan, 2006.
"Forecast Combinations,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196,
Elsevier.
- Timmermann, Allan, 2005. "Forecast Combinations," CEPR Discussion Papers 5361, C.E.P.R. Discussion Papers.
- Marco Aiolfi & Carlos Capistrán & Allan Timmermann, 2010. "Forecast Combinations," CREATES Research Papers 2010-21, Department of Economics and Business Economics, Aarhus University.
- Aiolfi Marco & Capistrán Carlos & Timmermann Allan, 2010. "Forecast Combinations," Working Papers 2010-04, Banco de México.
- Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Oxford University Press, vol. 7(2), pages 174-196, Spring.
- Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019.
"Macroeconomic forecast accuracy in a data‐rich environment,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1050-1072, November.
- Rachidi Kotchoni & Maxime Leroux & Dalibor Stevanovic, 2019. "Macroeconomic Forecast Accuracy in data-rich environment," Post-Print hal-02435757, HAL.
- repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
- Mengmeng Ao & Li Yingying & Xinghua Zheng, 2019. "Approaching Mean-Variance Efficiency for Large Portfolios," The Review of Financial Studies, Society for Financial Studies, vol. 32(7), pages 2890-2919.
- Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
- Li, Jiahan & Chen, Weiye, 2014. "Forecasting macroeconomic time series: LASSO-based approaches and their forecast combinations with dynamic factor models," International Journal of Forecasting, Elsevier, vol. 30(4), pages 996-1015.
- Jeremy Smith & Kenneth F. Wallis, 2009. "A Simple Explanation of the Forecast Combination Puzzle," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(3), pages 331-355, June.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Shi, Zhentao, 2016. "Econometric estimation with high-dimensional moment equalities," Journal of Econometrics, Elsevier, vol. 195(1), pages 104-119.
- Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
- Jianqing Fan & Jingjin Zhang & Ke Yu, 2012. "Vast Portfolio Selection With Gross-Exposure Constraints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 592-606, June.
- Bayer, Sebastian, 2018. "Combining Value-at-Risk forecasts using penalized quantile regressions," Econometrics and Statistics, Elsevier, vol. 8(C), pages 56-77.
- Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
- Liangjun Su & Xia Wang & Sainan Jin, 2019. "Sieve Estimation of Time-Varying Panel Data Models With Latent Structures," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 334-349, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Nabil Bouamara & S'ebastien Laurent & Shuping Shi, 2023. "Sequential Cauchy Combination Test for Multiple Testing Problems with Financial Applications," Papers 2303.13406, arXiv.org, revised Jun 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.
- Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
- Jiun-Hua Su, 2021. "No-Regret Forecasting with Egalitarian Committees," Papers 2109.13801, arXiv.org.
- Li, Li & Kang, Yanfei & Li, Feng, 2023.
"Bayesian forecast combination using time-varying features,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
- Li Li & Yanfei Kang & Feng Li, 2021. "Bayesian forecast combination using time-varying features," Papers 2108.02082, arXiv.org, revised Jun 2022.
- Tae-Hwy Lee & Ekaterina Seregina, 2020.
"Learning from Forecast Errors: A New Approach to Forecast Combination,"
Working Papers
202024, University of California at Riverside, Department of Economics.
- Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combinations," Papers 2011.02077, arXiv.org, revised May 2021.
- Diebold, Francis X. & Shin, Minchul, 2019.
"Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially-Egalitarian Lasso and its Derivatives," NBER Working Papers 24967, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Minchul Shin, 2018. "Machine Learning for Regularized Survey Forecast Combination: Partially Egalitarian Lasso and its Derivatives," PIER Working Paper Archive 18-014, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 17 Aug 2018.
- Roccazzella, Francesco & Candelon, Bertrand, 2022. "Should we care about ECB inflation expectations?," LIDAM Discussion Papers LFIN 2022004, Université catholique de Louvain, Louvain Finance (LFIN).
- João F. Caldeira & Guilherme V. Moura & Francisco J. Nogales & André A. P. Santos, 2017. "Combining Multivariate Volatility Forecasts: An Economic-Based Approach," Journal of Financial Econometrics, Oxford University Press, vol. 15(2), pages 247-285.
- Qian, Yilin & Thompson, Ryan & Vasnev, Andrey L, 2022. "Global combinations of expert forecasts," Working Papers BAWP-2022-02, University of Sydney Business School, Discipline of Business Analytics.
- Radchenko, Peter & Vasnev, Andrey L. & Wang, Wendun, 2023.
"Too similar to combine? On negative weights in forecast combination,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 18-38.
- Radchenko, Peter & Vasnev, Andrey & Wang, Wendun, 2020. "Too similar to combine? On negative weights in forecast combination," Working Papers BAWP-2020-02, University of Sydney Business School, Discipline of Business Analytics.
- Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024.
"Flexible global forecast combinations,"
Omega, Elsevier, vol. 126(C).
- Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
- Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
- Chen, Yi-Ting & Liu, Chu-An, 2023.
"Model averaging for asymptotically optimal combined forecasts,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 592-607.
- Yi-Ting Chen & Chu-An Liu, 2021. "Model Averaging for Asymptotically Optimal Combined Forecasts," IEAS Working Paper : academic research 21-A002, Institute of Economics, Academia Sinica, Taipei, Taiwan.
- Antoine Mandel & Amir Sani, 2016.
"Learning Time-Varying Forecast Combinations,"
Documents de travail du Centre d'Economie de la Sorbonne
16036, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
- Antoine Mandel & Amir Sani, 2016. "Learning Time-Varying Forecast Combinations," Documents de travail du Centre d'Economie de la Sorbonne 16036r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Sep 2016.
- Antoine Mandel & Amir Sani, 2017.
"A Machine Learning Approach to the Forecast Combination Puzzle,"
Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers)
halshs-01317974, HAL.
- Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Working Papers halshs-01317974, HAL.
- Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015.
"Optimal combination of survey forecasts,"
International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
- Giannone, Domenico & De Mol, Christine & Conflitti, Cristina, 2012. "Optimal Combination of Survey Forecasts," CEPR Discussion Papers 9096, C.E.P.R. Discussion Papers.
- Cristina Conflitti & Christine De Mol & Domenico Giannone, 2012. "Optimal Combination of Survey Forecasts," Working Papers ECARES ECARES 2012-023, ULB -- Universite Libre de Bruxelles.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2022.
"Optimal and robust combination of forecasts via constrained optimization and shrinkage,"
International Journal of Forecasting, Elsevier, vol. 38(1), pages 97-116.
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2020. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Discussion Papers LFIN 2020006, Université catholique de Louvain, Louvain Finance (LFIN).
- Roccazzella, Francesco & Gambetti, Paolo & Vrins, Frédéric, 2021. "Optimal and robust combination of forecasts via constrained optimization and shrinkage," LIDAM Reprints LFIN 2021014, Université catholique de Louvain, Louvain Finance (LFIN).
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023.
"Machine learning advances for time series forecasting,"
Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
- Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2020. "Machine Learning Advances for Time Series Forecasting," Papers 2012.12802, arXiv.org, revised Apr 2021.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2020-11-09 (Econometrics)
- NEP-FOR-2020-11-09 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2010.09477. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.