IDEAS home Printed from https://ideas.repec.org/p/ags/aaea12/125001.html
   My bibliography  Save this paper

Impacts of Permanent and Transitory Shocks on Optimal Length of Moving Average to Predict Wheat Basis

Author

Listed:
  • Lee, Yoonsuk
  • Brorsen, B. Wade

Abstract

A new stochastic process is introduced where permanent changes occur following a Poisson jump process and temporary changes occur following a normal distribution. The model is estimated using hard wheat basis data and is used to explain why the optimal length of moving average to forecast basis varies over time. The estimated probability of jumps is large and thus the optimal length of moving average is small.

Suggested Citation

  • Lee, Yoonsuk & Brorsen, B. Wade, 2012. "Impacts of Permanent and Transitory Shocks on Optimal Length of Moving Average to Predict Wheat Basis," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125001, Agricultural and Applied Economics Association.
  • Handle: RePEc:ags:aaea12:125001
    DOI: 10.22004/ag.econ.125001
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/125001/files/paper%20for%20AAEA%20meeting%20-%20Revised.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.125001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Bruce E & West, Kenneth D, 2002. "Generalized Method of Moments and Macroeconomics," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 460-469, October.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Hatchett, Robert B. & Brorsen, B. Wade & Anderson, Kim B., 2010. "Optimal Length of Moving Average to Forecast Futures Basis," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 35(1), pages 1-16.
    4. Hall, Joyce A. & Brorsen, B. Wade & Irwin, Scott H., 1989. "The Distribution of Futures Prices: A Test of the Stable Paretian and Mixture of Normals Hypotheses," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(1), pages 105-116, March.
    5. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    6. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    7. Gallant, A. Ronald & Tauchen, George, 1996. "Which Moments to Match?," Econometric Theory, Cambridge University Press, vol. 12(4), pages 657-681, October.
    8. Sanders, Dwight R. & Manfredo, Mark R., 2006. "Forecasting Basis Levels in the Soybean Complex: A Comparison of Time Series Methods," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 38(3), pages 513-523, December.
    9. Campbell, John Y & Mankiw, N Gregory, 1987. "Permanent and Transitory Components in Macroeconomic Fluctuations," American Economic Review, American Economic Association, vol. 77(2), pages 111-117, May.
    10. Steen Koekebakker & Gudbrand Lien, 2004. "Volatility and Price Jumps in Agricultural Futures Prices—Evidence from Wheat Options," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 86(4), pages 1018-1031.
    11. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    12. Dykema, Amy & Klein, Nicole L. & Taylor, Gary, 2002. "The Widening Corn Basis In South Dakota: Factors Affecting And The Impact Of The Loan Deficiency Payment," 2002 Annual Meeting, July 28-31, 2002, Long Beach, California 36574, Western Agricultural Economics Association.
    13. Jiang, Bingrong, 1997. "Corn and soybean basis behavior and forecasting: fundamental and alternative approaches," ISU General Staff Papers 1997010108000013213, Iowa State University, Department of Economics.
    14. Junsoo Lee & Mark C. Strazicich, 2003. "Minimum Lagrange Multiplier Unit Root Test with Two Structural Breaks," The Review of Economics and Statistics, MIT Press, vol. 85(4), pages 1082-1089, November.
    15. Hayenga, Marvin L. & Jiang, Bingrong, 1997. "Corn and Soybean Basis Behavior and Forecasting: Fundamental and Alternative Approaches," Staff General Research Papers Archive 10400, Iowa State University, Department of Economics.
    16. Hilliard, Jimmy E. & Reis, Jorge, 1998. "Valuation of Commodity Futures and Options under Stochastic Convenience Yields, Interest Rates, and Jump Diffusions in the Spot," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(1), pages 61-86, March.
    17. Akgiray, Vedat & Booth, G Geoffrey, 1988. "Mixed Diffusion-Jump Process Modeling of Exchange Rate Movements," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 631-637, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoonsuk Lee & B. Wade Brorsen, 2017. "Permanent shocks and forecasting with moving averages," Applied Economics, Taylor & Francis Journals, vol. 49(12), pages 1213-1225, March.
    2. Yoonsuk Lee & B. Wade Brorsen, 2017. "Permanent Breaks and Temporary Shocks in a Time Series," Computational Economics, Springer;Society for Computational Economics, vol. 49(2), pages 255-270, February.
    3. Onel, Gulcan & Karali, Berna, 2014. "Relative Performance of Semi-Parametric Nonlinear Models in Forecasting Basis," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 169795, Agricultural and Applied Economics Association.
    4. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.
    5. Meddahi, N., 2001. "An Eigenfunction Approach for Volatility Modeling," Cahiers de recherche 2001-29, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    6. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    7. repec:wyi:journl:002108 is not listed on IDEAS
    8. Kerry Patterson & Michael A. Thornton, 2013. "A review of econometric concepts and methods for empirical macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 2, pages 4-42, Edward Elgar Publishing.
    9. Carverhill, Andrew & Luo, Dan, 2023. "A Bayesian analysis of time-varying jump risk in S&P 500 returns and options," Journal of Financial Markets, Elsevier, vol. 64(C).
    10. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    11. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    12. Chen, Gang & Roberts, Matthew C. & Roe, Brian E., 2005. "Empirical Performance of Alternative Option Pricing Models for Commodity Futures Options," 2005 Annual meeting, July 24-27, Providence, RI 19183, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Pascale VALERY (HEC-Montreal) & Jean-Marie Dufour (University of Montreal), 2004. "A simple estimation method and finite-sample inference for a stochastic volatility model," Econometric Society 2004 North American Summer Meetings 153, Econometric Society.
    14. Welch, J. Mark & Mkrtchyan, Vardan & Power, Gabriel J., 2009. "Predicting the Corn Basis in the Texas Triangle Area," Journal of Agribusiness, Agricultural Economics Association of Georgia, vol. 27(1-2), pages 1-15.
    15. Bekkerman, Anton & Taylor, Mykel, 2015. "A Bayesian Learning Approach to Estimating Unbalanced Spatial Panel Models," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205507, Agricultural and Applied Economics Association.
    16. Carrasco, Marine & Chernov, Mikhaël & Florens, Jean-Pierre & Ghysels, Eric, 2000. "Efficient Estimation of Jump Diffusions and General Dynamic Models with a Continuum of Moment Conditions," IDEI Working Papers 116, Institut d'Économie Industrielle (IDEI), Toulouse, revised 2002.
    17. Michael Rockinger & Maria Semenova, 2005. "Estimation of Jump-Diffusion Process vis Empirical Characteristic Function," FAME Research Paper Series rp150, International Center for Financial Asset Management and Engineering.
    18. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    19. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
    20. Anton Bekkerman & Mykel Taylor, 2020. "The Role of Spatial Density and Technological Investment on Optimal Pricing Strategies in the Grain Handling Industry," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 57(1), pages 27-58, August.
    21. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    22. Dempster, M.A.H. & Medova, Elena & Tang, Ke, 2018. "Latent jump diffusion factor estimation for commodity futures," Journal of Commodity Markets, Elsevier, vol. 9(C), pages 35-54.

    More about this item

    Keywords

    Research and Development/Tech Change/Emerging Technologies; Research Methods/ Statistical Methods;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aaea12:125001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aaeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.