IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v89y2023ics1057521923002363.html
   My bibliography  Save this article

Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information

Author

Listed:
  • Wang, Lu
  • Wu, Rui
  • Ma, WeiChun
  • Xu, Weiju

Abstract

Based on the close relationship between the global soybean market and weather variables, current studies regarding soybean volatility forecasting under weather information are limited. The aim of our study is to fill this gap and examine the predictive power of soybean volatility by separately adding normal and bagging-based weather information. Methodologically, two types of extended GARCH-MIDAS approaches with weather variables, the GARCH-MIDAS-W and GARCH-MIDAS-W-MBB models, are first introduced into soybean volatility forecasting. By using the prices of soybean futures and weather information including clear-sky index, cloud cover, relative humidity, atmospheric pressure, precipitation, temperature and wind speed, our findings provide fresh evidence that predictive models that incorporate bagging-based weather information significantly outperform the models with raw weather indicators and the model without weather information. Finally, our conclusions are robust to further robustness checks. Our novel bagging-related GARCH-MIDAS-W-MBB model with weather indicators can provide fresh insights into soybean volatility forecasting.

Suggested Citation

  • Wang, Lu & Wu, Rui & Ma, WeiChun & Xu, Weiju, 2023. "Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information," International Review of Financial Analysis, Elsevier, vol. 89(C).
  • Handle: RePEc:eee:finana:v:89:y:2023:i:c:s1057521923002363
    DOI: 10.1016/j.irfa.2023.102720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521923002363
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2023.102720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Li & Wang, Lu & Wang, Xunxiao & Zhang, Yaojie & Pan, Zhigang, 2022. "How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method," Resources Policy, Elsevier, vol. 77(C).
    2. Jian Yang & Michael Haigh & David Leatham, 2001. "Agricultural liberalization policy and commodity price volatility: a GARCH application," Applied Economics Letters, Taylor & Francis Journals, vol. 8(9), pages 593-598.
    3. Franses, Philip Hans, 1991. "Seasonality, non-stationarity and the forecasting of monthly time series," International Journal of Forecasting, Elsevier, vol. 7(2), pages 199-208, August.
    4. Salisu, Afees A. & Gupta, Rangan & Bouri, Elie & Ji, Qiang, 2020. "The role of global economic conditions in forecasting gold market volatility: Evidence from a GARCH-MIDAS approach," Research in International Business and Finance, Elsevier, vol. 54(C).
    5. Hong, Yanran & Yu, Jize & Su, Yuquan & Wang, Lu, 2023. "Southern oscillation: Great value of its trends for forecasting crude oil spot price volatility," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 358-368.
    6. Inoue, Atsushi & Kilian, Lutz, 2008. "How Useful Is Bagging in Forecasting Economic Time Series? A Case Study of U.S. Consumer Price Inflation," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 511-522, June.
    7. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
    8. Libing Fang & Baizhu Chen & Honghai Yu & Yichuo Qian, 2018. "The importance of global economic policy uncertainty in predicting gold futures market volatility: A GARCH‐MIDAS approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 413-422, March.
    9. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    10. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2022. "Forecasting realized volatility of agricultural commodities," International Journal of Forecasting, Elsevier, vol. 38(1), pages 74-96.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Westcott, Paul C. & Jewison, Michael, 2013. "Weather Effects on Expected Corn and Soybean Yields," Agricultural Outlook Forum 2013 146846, United States Department of Agriculture, Agricultural Outlook Forum.
    13. Dejan Živkov & Boris Kuzman & Jonel Subić, 2020. "What Bayesian quantiles can tell about volatility transmission between the major agricultural futures?," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 66(5), pages 215-225.
    14. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    15. Lu, Fei & Ma, Feng & Li, Pan & Huang, Dengshi, 2022. "Natural gas volatility predictability in a data-rich world," International Review of Financial Analysis, Elsevier, vol. 83(C).
    16. Sean D. Campbell & Francis X. Diebold, 2005. "Weather Forecasting for Weather Derivatives," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
    17. Andreasson, Pierre & Bekiros, Stelios & Nguyen, Duc Khuong & Uddin, Gazi Salah, 2016. "Impact of speculation and economic uncertainty on commodity markets," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 115-127.
    18. Chang, Ching-Cheng, 2002. "The potential impact of climate change on Taiwan's agriculture," Agricultural Economics, Blackwell, vol. 27(1), pages 51-64, May.
    19. Heien, Dale & Pick, Daniel H., 1991. "The Structure Of International Demand For Soybean Products," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 23(1), pages 1-7, July.
    20. Lin Sun & Mingxian Qi & Michael R. Reed, 2018. "The effects of soybean trade policies on domestic soybean market in China during the food crisis," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(3), pages 372-385, July.
    21. Hardik A. Marfatia & Qiang Ji & Jiawen Luo, 2022. "Forecasting the volatility of agricultural commodity futures: The role of co‐volatility and oil volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 383-404, March.
    22. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    23. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    24. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    25. Robert F. Engle & Eric Ghysels & Bumjean Sohn, 2013. "Stock Market Volatility and Macroeconomic Fundamentals," The Review of Economics and Statistics, MIT Press, vol. 95(3), pages 776-797, July.
    26. Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
    27. Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016. "Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
    28. Paulson, Nick & Janzen, Joe & Zulauf, Carl & Swanson, Krista & Schnitkey, Gary, 2022. "Revisiting Ukraine, Russia, and Agricultural Commodity Markets," farmdoc daily, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics, vol. 12(27), February.
    29. Chao Liang & Feng Ma & Lu Wang & Qing Zeng, 2021. "The information content of uncertainty indices for natural gas futures volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1310-1324, November.
    30. Zanias, George P., 1999. "Seasonality and spatial integration in agricultural (product) markets," Agricultural Economics, Blackwell, vol. 20(3), pages 253-262, May.
    31. Lu Wang & Feng Ma & Guoshan Liu & Qiaoqi Lang, 2023. "Do extreme shocks help forecast oil price volatility? The augmented GARCH‐MIDAS approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 28(2), pages 2056-2073, April.
    32. Lee, Tae-Hwy & Yang, Yang, 2006. "Bagging binary and quantile predictors for time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 465-497.
    33. Fang, Tong & Su, Zhi & Yin, Libo, 2020. "Economic fundamentals or investor perceptions? The role of uncertainty in predicting long-term cryptocurrency volatility," International Review of Financial Analysis, Elsevier, vol. 71(C).
    34. Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018. "Exploring the sources of uncertainty: Why does bagging for time series forecasting work?," European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.
    35. Lin Sun & Mingxian Qi & Michael R. Reed, 2018. "The effects of soybean trade policies on domestic soybean market in China during the food crisis," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(3), pages 372-385, July.
    36. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    37. Lu Wang & Feng Ma & Guoshan Liu, 2020. "Forecasting stock volatility in the presence of extreme shocks: Short‐term and long‐term effects," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 797-810, August.
    38. Ong, Adriel, 2021. "Historical Climate Factors and Rice Prices in the Philippines," MSR Working Papers 2-2021, M&S Research Hub institute.
    39. Narayan, Paresh Kumar & Bannigidadmath, Deepa, 2015. "Are Indian stock returns predictable?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 506-531.
    40. Veli YILANCI, 2008. "Are Unemployment Rates Nonstationary or Nonlinear? Evidence from 19 OECD Countries," Economics Bulletin, AccessEcon, vol. 3(47), pages 1-5.
    41. Tangermann, Stefan, 2011. "Policy Solutions to Agricultural Market Volatility: A Synthesis," Price Volatility and Beyond 320209, International Centre for Trade and Sustainable Development (ICTSD).
    42. Quanbiao Shang & Mindy Mallory & Philip Garcia, 2018. "The components of the bid†ask spread: Evidence from the corn futures market," Agricultural Economics, International Association of Agricultural Economists, vol. 49(3), pages 381-393, May.
    43. Wallace E. Tyner, 2010. "The integration of energy and agricultural markets," Agricultural Economics, International Association of Agricultural Economists, vol. 41(s1), pages 193-201, November.
    44. Christian Hennig & Willi Sauerbrei, 2019. "Exploration of the variability of variable selection based on distances between bootstrap sample results," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 933-963, December.
    45. Jeroen Warner, 2015. "South-South cooperation: Brazilian soy diplomacy looking East?," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(6), pages 1175-1185, December.
    46. George P. Zanias, 1999. "Seasonality and spatial integration in agricultural (product) markets," Agricultural Economics, International Association of Agricultural Economists, vol. 20(3), pages 253-262, May.
    47. Xiafei Li & Yu Wei & Xiaodan Chen & Feng Ma & Chao Liang & Wang Chen, 2022. "Which uncertainty is powerful to forecast crude oil market volatility? New evidence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(4), pages 4279-4297, October.
    48. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    49. Jian Liu & Ziting Zhang & Lizhao Yan & Fenghua Wen, 2021. "Forecasting the volatility of EUA futures with economic policy uncertainty using the GARCH-MIDAS model," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-19, December.
    50. Liang, Chao & Umar, Muhammad & Ma, Feng & Huynh, Toan L.D., 2022. "Climate policy uncertainty and world renewable energy index volatility forecasting," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    51. Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yun-Shi Dai & Peng-Fei Dai & Wei-Xing Zhou, 2024. "The impact of geopolitical risk on the international agricultural market: Empirical analysis based on the GJR-GARCH-MIDAS model," Papers 2404.01641, arXiv.org.
    2. Salisu, Afees A. & Ogbonna, Ahamuefula E. & Gupta, Rangan & Bouri, Elie, 2024. "Energy-related uncertainty and international stock market volatility," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 280-293.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Chao & Xia, Zhenglan & Lai, Xiaodong & Wang, Lu, 2022. "Natural gas volatility prediction: Fresh evidence from extreme weather and extended GARCH-MIDAS-ES model," Energy Economics, Elsevier, vol. 116(C).
    2. Li, Xiafei & Guo, Qiang & Liang, Chao & Umar, Muhammad, 2023. "Forecasting gold volatility with geopolitical risk indices," Research in International Business and Finance, Elsevier, vol. 64(C).
    3. Wang, Lu & Wu, Jiangbin & Cao, Yang & Hong, Yanran, 2022. "Forecasting renewable energy stock volatility using short and long-term Markov switching GARCH-MIDAS models: Either, neither or both?," Energy Economics, Elsevier, vol. 111(C).
    4. Li, Zepei & Huang, Haizhen, 2023. "Challenges for volatility forecasts of US fossil energy spot markets during the COVID-19 crisis," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 31-45.
    5. Chen, Juan & Xiao, Zuoping & Bai, Jiancheng & Guo, Hongling, 2023. "Predicting volatility in natural gas under a cloud of uncertainties," Resources Policy, Elsevier, vol. 82(C).
    6. Jin, Daxiang & Yu, Jize, 2023. "Predicting cryptocurrency market volatility: Novel evidence from climate policy uncertainty," Finance Research Letters, Elsevier, vol. 58(PC).
    7. Zhang, Li & Wang, Lu & Wang, Xunxiao & Zhang, Yaojie & Pan, Zhigang, 2022. "How macro-variables drive crude oil volatility? Perspective from the STL-based iterated combination method," Resources Policy, Elsevier, vol. 77(C).
    8. Wang, Ping & Han, Wei & Huang, Chengcheng & Duong, Duy, 2022. "Forecasting realised volatility from search volume and overnight sentiment: Evidence from China," Research in International Business and Finance, Elsevier, vol. 62(C).
    9. Zhang, Xiaoyun & Guo, Qiang, 2024. "How useful are energy-related uncertainty for oil price volatility forecasting?," Finance Research Letters, Elsevier, vol. 60(C).
    10. Lyu, Zhichong & Ma, Feng & Zhang, Jixiang, 2023. "Oil futures volatility prediction: Bagging or combination?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 457-467.
    11. Duan, Huayou & Zhao, Chenchen & Wang, Lu & Liu, Guangqiang, 2024. "The relationship between renewable energy attention and volatility: A HAR model with markov time-varying transition probability," Research in International Business and Finance, Elsevier, vol. 71(C).
    12. Xiafei Li & Dongxin Li & Xuhui Zhang & Guiwu Wei & Lan Bai & Yu Wei, 2021. "Forecasting regular and extreme gold price volatility: The roles of asymmetry, extreme event, and jump," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1501-1523, December.
    13. Zhang, Li & Liang, Chao & Huynh, Luu Duc Toan & Wang, Lu & Damette, Olivier, 2024. "Measuring the impact of climate risk on renewable energy stock volatility: A case study of G20 economies," Journal of Economic Behavior & Organization, Elsevier, vol. 223(C), pages 168-184.
    14. Liang, Chao & Luo, Qin & Li, Yan & Huynh, Luu Duc Toan, 2023. "Global financial stress index and long-term volatility forecast for international stock markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 88(C).
    15. Zhang, Yaojie & Lei, Likun & Wei, Yu, 2020. "Forecasting the Chinese stock market volatility with international market volatilities: The role of regime switching," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    16. Zhang, Jiaming & Xiang, Yitian & Zou, Yang & Guo, Songlin, 2024. "Volatility forecasting of Chinese energy market: Which uncertainty have better performance?," International Review of Financial Analysis, Elsevier, vol. 91(C).
    17. Segnon, Mawuli & Gupta, Rangan & Wilfling, Bernd, 2024. "Forecasting stock market volatility with regime-switching GARCH-MIDAS: The role of geopolitical risks," International Journal of Forecasting, Elsevier, vol. 40(1), pages 29-43.
    18. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    19. Guo, Xiaozhu & Huang, Dengshi & Li, Xiafei & Liang, Chao, 2023. "Are categorical EPU indices predictable for carbon futures volatility? Evidence from the machine learning method," International Review of Economics & Finance, Elsevier, vol. 83(C), pages 672-693.
    20. Wang, Lu & Zhao, Chenchen & Liang, Chao & Jiu, Song, 2022. "Predicting the volatility of China's new energy stock market: Deep insight from the realized EGARCH-MIDAS model," Finance Research Letters, Elsevier, vol. 48(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:89:y:2023:i:c:s1057521923002363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.