IDEAS home Printed from https://ideas.repec.org/a/eee/finmar/v56y2021ics1386418120300677.html
   My bibliography  Save this article

Investment styles and the multiple testing of cross-sectional stock return predictability

Author

Listed:
  • Vincent, Kendro
  • Hsu, Yu-Chin
  • Lin, Hsiou-Wei

Abstract

The scheme of simultaneously testing many profitable strategies may conceal the hazard of data-snooping bias. However, certain portfolio returns are also more likely to exhibit codependency because of their same investment styles. Aiming at the phenomena of stock return anomalies, we consider two multiple testing approaches: one ignores the classification of portfolios and the other utilizes such information. The results based on grouped multiple testing suggest that the implied adjusted critical values for t-statistics may vary across investment styles, and several statistically significant portfolios may be unidentified under the pooled setup.

Suggested Citation

  • Vincent, Kendro & Hsu, Yu-Chin & Lin, Hsiou-Wei, 2021. "Investment styles and the multiple testing of cross-sectional stock return predictability," Journal of Financial Markets, Elsevier, vol. 56(C).
  • Handle: RePEc:eee:finmar:v:56:y:2021:i:c:s1386418120300677
    DOI: 10.1016/j.finmar.2020.100598
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1386418120300677
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.finmar.2020.100598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    2. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    3. repec:cup:jfinqa:v:46:y:2011:i:06:p:1629-1650_00 is not listed on IDEAS
    4. Jean‐Philippe Bouchaud & Philipp Krüger & Augustin Landier & David Thesmar, 2019. "Sticky Expectations and the Profitability Anomaly," Journal of Finance, American Finance Association, vol. 74(2), pages 639-674, April.
    5. Frederico Belo & Xiaoji Lin & Santiago Bazdresch, 2014. "Labor Hiring, Investment, and Stock Return Predictability in the Cross Section," Journal of Political Economy, University of Chicago Press, vol. 122(1), pages 129-177.
    6. Lewellen, Jonathan, 2015. "The Cross-section of Expected Stock Returns," Critical Finance Review, now publishers, vol. 4(1), pages 1-44, June.
    7. Tarun Chordia & Amit Goyal & Alessio Saretto & Andrew KarolyiEditor, 2020. "Anomalies and False Rejections," Review of Finance, European Finance Association, vol. 33(5), pages 2134-2179.
    8. Novy-Marx, Robert, 2013. "The other side of value: The gross profitability premium," Journal of Financial Economics, Elsevier, vol. 108(1), pages 1-28.
    9. Chordia, Tarun & Subrahmanyam, Avanidhar & Anshuman, V. Ravi, 2001. "Trading activity and expected stock returns," Journal of Financial Economics, Elsevier, vol. 59(1), pages 3-32, January.
    10. Kewei Hou & Tobias J. Moskowitz, 2005. "Market Frictions, Price Delay, and the Cross-Section of Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 981-1020.
    11. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    12. Basu, Sanjoy, 1983. "The relationship between earnings' yield, market value and return for NYSE common stocks : Further evidence," Journal of Financial Economics, Elsevier, vol. 12(1), pages 129-156, June.
    13. Laurent Barras & Olivier Scaillet & Russ Wermers, 2010. "False Discoveries in Mutual Fund Performance: Measuring Luck in Estimated Alphas," Journal of Finance, American Finance Association, vol. 65(1), pages 179-216, February.
    14. T. Tony Cai & Wenguang Sun, 2017. "Large-Scale Global and Simultaneous Inference: Estimation and Testing in Very High Dimensions," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 411-439, September.
    15. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    16. Laura Xiaolei Liu & Toni M. Whited & Lu Zhang, 2009. "Investment-Based Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 117(6), pages 1105-1139, December.
    17. Richardson, Scott A. & Sloan, Richard G. & Soliman, Mark T. & Tuna, Irem, 2005. "Accrual reliability, earnings persistence and stock prices," Journal of Accounting and Economics, Elsevier, vol. 39(3), pages 437-485, September.
    18. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    19. Eugene F. Fama & Kenneth R. French, 2008. "Dissecting Anomalies," Journal of Finance, American Finance Association, vol. 63(4), pages 1653-1678, August.
    20. Matti Keloharju & Juhani T. Linnainmaa & Peter Nyberg, 2016. "Return Seasonalities," Journal of Finance, American Finance Association, vol. 71(4), pages 1557-1590, August.
    21. Bali, Turan G. & Cakici, Nusret, 2008. "Idiosyncratic Volatility and the Cross Section of Expected Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(1), pages 29-58, March.
    22. Joseph P. Romano & Michael Wolf, "undated". "Control of Generalized Error Rates in Multiple Testing," IEW - Working Papers 245, Institute for Empirical Research in Economics - University of Zurich.
    23. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    24. Yu-Chin Hsu & Chung-Ming Kuan & Meng-Feng Yen, 2014. "A Generalized Stepwise Procedure with Improved Power for Multiple Inequalities Testing," Journal of Financial Econometrics, Oxford University Press, vol. 12(4), pages 730-755.
    25. Han, Yufeng & Yang, Ke & Zhou, Guofu, 2013. "A New Anomaly: The Cross-Sectional Profitability of Technical Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(5), pages 1433-1461, October.
    26. Lev, B & Thiagarajan, Sr, 1993. "Fundamental Information Analysis," Journal of Accounting Research, Wiley Blackwell, vol. 31(2), pages 190-215.
    27. Campbell R Harvey & Yan Liu & Alessio Saretto & Jeffrey Pontiff, 2020. "An Evaluation of Alternative Multiple Testing Methods for Finance Applications," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(2), pages 199-248.
    28. Campbell R. Harvey, 2017. "Presidential Address: The Scientific Outlook in Financial Economics," Journal of Finance, American Finance Association, vol. 72(4), pages 1399-1440, August.
    29. Michael J. Cooper & Huseyin Gulen & Michael J. Schill, 2008. "Asset Growth and the Cross‐Section of Stock Returns," Journal of Finance, American Finance Association, vol. 63(4), pages 1609-1651, August.
    30. Kewei Hou & David T. Robinson, 2006. "Industry Concentration and Average Stock Returns," Journal of Finance, American Finance Association, vol. 61(4), pages 1927-1956, August.
    31. repec:bla:jfinan:v:43:y:1988:i:2:p:507-28 is not listed on IDEAS
    32. Jeremiah Green & John R. M. Hand & X. Frank Zhang, 2017. "The Characteristics that Provide Independent Information about Average U.S. Monthly Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4389-4436.
    33. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    34. Palazzo, Berardino, 2012. "Cash holdings, risk, and expected returns," Journal of Financial Economics, Elsevier, vol. 104(1), pages 162-185.
    35. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    36. Xuemin (Sterling) Yan & Lingling Zheng, 2017. "Fundamental Analysis and the Cross-Section of Stock Returns: A Data-Mining Approach," The Review of Financial Studies, Society for Financial Studies, vol. 30(4), pages 1382-1423.
    37. Kent Daniel & Sheridan Titman, 2006. "Market Reactions to Tangible and Intangible Information," Journal of Finance, American Finance Association, vol. 61(4), pages 1605-1643, August.
    38. Beaver, William & McNichols, Maureen & Price, Richard, 2007. "Delisting returns and their effect on accounting-based market anomalies," Journal of Accounting and Economics, Elsevier, vol. 43(2-3), pages 341-368, July.
    39. Hu, James X. & Zhao, Hongyu & Zhou, Harrison H., 2010. "False Discovery Rate Control With Groups," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1215-1227.
    40. Andrea L. Eisfeldt & Dimitris Papanikolaou, 2013. "Organization Capital and the Cross-Section of Expected Returns," Journal of Finance, American Finance Association, vol. 68(4), pages 1365-1406, August.
    41. Christopher W. Anderson & Luis Garcia‐Feijóo, 2006. "Empirical Evidence on Capital Investment, Growth Options, and Security Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 171-194, February.
    42. R. David Mclean & Jeffrey Pontiff, 2016. "Does Academic Research Destroy Stock Return Predictability?," Journal of Finance, American Finance Association, vol. 71(1), pages 5-32, February.
    43. repec:bla:jfinan:v:59:y:2004:i:5:p:2145-2176 is not listed on IDEAS
    44. Kewei Hou & Chen Xue & Lu Zhang, 2015. "Editor's Choice Digesting Anomalies: An Investment Approach," The Review of Financial Studies, Society for Financial Studies, vol. 28(3), pages 650-705.
    45. Chordia, Tarun & Subrahmanyam, Avanidhar & Tong, Qing, 2014. "Have capital market anomalies attenuated in the recent era of high liquidity and trading activity?," Journal of Accounting and Economics, Elsevier, vol. 58(1), pages 41-58.
    46. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    47. Daniel Yekutieli, 2008. "Comments on: Control of the false discovery rate under dependence using the bootstrap and subsampling," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 458-460, November.
    48. Loughran, Tim & Wellman, Jay W., 2011. "New Evidence on the Relation between the Enterprise Multiple and Average Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(6), pages 1629-1650, December.
    49. De Bondt, Werner F M & Thaler, Richard, 1985. "Does the Stock Market Overreact?," Journal of Finance, American Finance Association, vol. 40(3), pages 793-805, July.
    50. Kewei Hou & Chen Xue & Lu Zhang, 2020. "Replicating Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2019-2133.
    51. Ou, Jane A. & Penman, Stephen H., 1989. "Financial statement analysis and the prediction of stock returns," Journal of Accounting and Economics, Elsevier, vol. 11(4), pages 295-329, November.
    52. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    53. Jaehoon Hahn & Hangyong Lee, 2009. "Financial Constraints, Debt Capacity, and the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 64(2), pages 891-921, April.
    54. Andrew Y Chen & Tom Zimmermann & Jeffrey Pontiff, 2020. "Publication Bias and the Cross-Section of Stock Returns," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 10(2), pages 249-289.
    55. Titman, Sheridan & Wei, K. C. John & Xie, Feixue, 2004. "Capital Investments and Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 677-700, December.
    56. Cai, T. Tony & Sun, Wenguang, 2009. "Simultaneous Testing of Grouped Hypotheses: Finding Needles in Multiple Haystacks," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1467-1481.
    57. Yoav Benjamini & Marina Bogomolov, 2014. "Selective inference on multiple families of hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 76(1), pages 297-318, January.
    58. Liu, Weimin, 2006. "A liquidity-augmented capital asset pricing model," Journal of Financial Economics, Elsevier, vol. 82(3), pages 631-671, December.
    59. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    60. Rina Foygel Barber & Aaditya Ramdas, 2017. "The p-filter: multilayer false discovery rate control for grouped hypotheses," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1247-1268, September.
    61. Tarun Chordia & Amit Goyal & Alessio Saretto, 2020. "Anomalies and False Rejections," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2134-2179.
    62. Eugene F. Fama & Kenneth R. French, 2016. "Dissecting Anomalies with a Five-Factor Model," The Review of Financial Studies, Society for Financial Studies, vol. 29(1), pages 69-103.
    63. Ball, Ray & Gerakos, Joseph & Linnainmaa, Juhani T. & Nikolaev, Valeri V., 2015. "Deflating profitability," Journal of Financial Economics, Elsevier, vol. 117(2), pages 225-248.
    64. Novy-Marx, Robert, 2012. "Is momentum really momentum?," Journal of Financial Economics, Elsevier, vol. 103(3), pages 429-453.
    65. Ball, Ray, 1978. "Anomalies in relationships between securities' yields and yield-surrogates," Journal of Financial Economics, Elsevier, vol. 6(2-3), pages 103-126.
    66. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    67. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awijen, Haithem & Ben Zaied, Younes & Ben Lahouel, Béchir & Khlifi, Foued, 2023. "Machine learning for US cross-industry return predictability under information uncertainty," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu-Chin Hsu & Hsiou-Wei Lin & Kendro Vincent, 2017. "Do Cross-Sectional Stock Return Predictors Pass the Test without Data-Snooping Bias?," IEAS Working Paper : academic research 17-A003, Institute of Economics, Academia Sinica, Taipei, Taiwan.
    2. Kewei Hou & Chen Xue & Lu Zhang, 2017. "Replicating Anomalies," NBER Working Papers 23394, National Bureau of Economic Research, Inc.
    3. Geertsema, Paul & Lu, Helen, 2020. "The correlation structure of anomaly strategies," Journal of Banking & Finance, Elsevier, vol. 119(C).
    4. Andrew Y. Chen & Tom Zimmermann, 2022. "Open Source Cross-Sectional Asset Pricing," Critical Finance Review, now publishers, vol. 11(2), pages 207-264, May.
    5. De Nard, Gianluca & Zhao, Zhao, 2022. "A large-dimensional test for cross-sectional anomalies:Efficient sorting revisited," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 654-676.
    6. Tran, Vu Le, 2023. "Sentiment and covariance characteristics," International Review of Financial Analysis, Elsevier, vol. 86(C).
    7. Tobek, Ondrej & Hronec, Martin, 2021. "Does it pay to follow anomalies research? Machine learning approach with international evidence," Journal of Financial Markets, Elsevier, vol. 56(C).
    8. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    9. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, June.
    10. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
    11. Cakici, Nusret & Zaremba, Adam & Bianchi, Robert J. & Pham, Nga, 2021. "False discoveries in the anomaly research: New insights from the Stock Exchange of Melbourne (1927–1987)," Pacific-Basin Finance Journal, Elsevier, vol. 70(C).
    12. Stephen A. Gorman & Frank J. Fabozzi, 2021. "The ABC’s of the alternative risk premium: academic roots," Journal of Asset Management, Palgrave Macmillan, vol. 22(6), pages 405-436, October.
    13. Cederburg, Scott & O’Doherty, Michael S. & Wang, Feifei & Yan, Xuemin (Sterling), 2020. "On the performance of volatility-managed portfolios," Journal of Financial Economics, Elsevier, vol. 138(1), pages 95-117.
    14. Wang, Feifei & Yan, Xuemin Sterling, 2021. "Downside risk and the performance of volatility-managed portfolios," Journal of Banking & Finance, Elsevier, vol. 131(C).
    15. Hediger, Simon & Michel, Loris & Näf, Jeffrey, 2022. "On the use of random forest for two-sample testing," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
    16. Jiaju Miao & Pawel Polak, 2023. "Online Ensemble of Models for Optimal Predictive Performance with Applications to Sector Rotation Strategy," Papers 2304.09947, arXiv.org.
    17. Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).
    18. Weichuan Deng & Pawel Polak & Abolfazl Safikhani & Ronakdilip Shah, 2023. "A Unified Framework for Fast Large-Scale Portfolio Optimization," Papers 2303.12751, arXiv.org, revised Nov 2023.
    19. Jozef Barunik & Martin Hronec & Ondrej Tobek, 2024. "Predicting the distributions of stock returns around the globe in the era of big data and learning," Papers 2408.07497, arXiv.org.
    20. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.

    More about this item

    Keywords

    Anomalies; Cross-section of stock returns; Data-snooping bias; Multiple testing; Selective inference;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finmar:v:56:y:2021:i:c:s1386418120300677. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/finmar .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.