IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v113y2011i3p259-262.html
   My bibliography  Save this article

Mean absolute percentage error and bias in economic forecasting

Author

Listed:
  • McKenzie, Jordi

Abstract

This article develops a simple theoretical framework to show how forecasters may bias downward point predictions under the assumption that the asymmetric loss function is directly related to the (Mean) Absolute Percentage Error (M)APE.

Suggested Citation

  • McKenzie, Jordi, 2011. "Mean absolute percentage error and bias in economic forecasting," Economics Letters, Elsevier, vol. 113(3), pages 259-262.
  • Handle: RePEc:eee:ecolet:v:113:y:2011:i:3:p:259-262
    DOI: 10.1016/j.econlet.2011.08.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176511003119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2011.08.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Terence Lim, 2001. "Rationality and Analysts' Forecast Bias," Journal of Finance, American Finance Association, vol. 56(1), pages 369-385, February.
    2. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    3. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    4. Gu, Zhaoyang & Wu, Joanna Shuang, 2003. "Earnings skewness and analyst forecast bias," Journal of Accounting and Economics, Elsevier, vol. 35(1), pages 5-29, April.
    5. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    6. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    7. Goodwin, Paul & Lawton, Richard, 1999. "On the asymmetry of the symmetric MAPE," International Journal of Forecasting, Elsevier, vol. 15(4), pages 405-408, October.
    8. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise Deep Residual model for short-term multi-step solar radiation prediction," Renewable Energy, Elsevier, vol. 190(C), pages 408-424.
    2. Jinze Song & Yuhao Li & Shuai Liu & Youming Xiong & Weixin Pang & Yufa He & Yaxi Mu, 2022. "Comparison of Machine Learning Algorithms for Sand Production Prediction: An Example for a Gas-Hydrate-Bearing Sand Case," Energies, MDPI, vol. 15(18), pages 1-32, September.
    3. Yi Tang & Yang Pan & Lei Zhang & Hongchen Yi & Yiping Gu & Weihao Sun, 2023. "Efficient Monitoring of Total Suspended Matter in Urban Water Based on UAV Multi-spectral Images," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(5), pages 2143-2160, March.
    4. Ghimire, Sujan & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2022. "Boosting solar radiation predictions with global climate models, observational predictors and hybrid deep-machine learning algorithms," Applied Energy, Elsevier, vol. 316(C).
    5. Ghimire, Sujan & Nguyen-Huy, Thong & AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Casillas-Pérez, David & Salcedo-Sanz, Sancho, 2023. "A novel approach based on integration of convolutional neural networks and echo state network for daily electricity demand prediction," Energy, Elsevier, vol. 275(C).
    6. Luisa Ferrari & Giuseppe Gerardi & Giancarlo Manzi & Alessandra Micheletti & Federica Nicolussi & Elia Biganzoli & Silvia Salini, 2021. "Modeling Provincial Covid-19 Epidemic Data Using an Adjusted Time-Dependent SIRD Model," IJERPH, MDPI, vol. 18(12), pages 1-20, June.
    7. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    8. Han-Khanh Nguyen, 2020. "Combining DEA and ARIMA Models for Partner Selection in the Supply Chain of Vietnam’s Construction Industry," Mathematics, MDPI, vol. 8(6), pages 1-20, May.
    9. Lisa M. Scheele & Ulrich W. Thonemann & Marco Slikker, 2018. "Designing Incentive Systems for Truthful Forecast Information Sharing Within a Firm," Management Science, INFORMS, vol. 64(8), pages 3690-3713, August.
    10. Tayfun Uyanık & Nur Najihah Abu Bakar & Özcan Kalenderli & Yasin Arslanoğlu & Josep M. Guerrero & Abderezak Lashab, 2023. "A Data-Driven Approach for Generator Load Prediction in Shipboard Microgrid: The Chemical Tanker Case Study," Energies, MDPI, vol. 16(13), pages 1-20, June.
    11. Zhang, X. & Chen, M.Y. & Wang, M.G. & Ge, Y.E. & Stanley, H.E., 2019. "A novel hybrid approach to Baltic Dry Index forecasting based on a combined dynamic fluctuation network and artificial intelligence method," Applied Mathematics and Computation, Elsevier, vol. 361(C), pages 499-516.
    12. Diankai Wang & Inna Gryshova & Mykola Kyzym & Tetiana Salashenko & Viktoriia Khaustova & Maryna Shcherbata, 2022. "Electricity Price Instability over Time: Time Series Analysis and Forecasting," Sustainability, MDPI, vol. 14(15), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    2. Bunn, Derek W. & Taylor, James W., 2001. "Setting accuracy targets for short-term judgemental sales forecasting," International Journal of Forecasting, Elsevier, vol. 17(2), pages 159-169.
    3. Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
    4. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    5. repec:kap:iaecre:v:15:y:2009:i:4:p:409-420 is not listed on IDEAS
    6. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    7. Louie Ren & Yong Glasure, 2009. "Applicability of the Revised Mean Absolute Percentage Errors (MAPE) Approach to Some Popular Normal and Non-normal Independent Time Series," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(4), pages 409-420, November.
    8. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    9. Dominik Martin & Philipp Spitzer & Niklas Kuhl, 2020. "A New Metric for Lumpy and Intermittent Demand Forecasts: Stock-keeping-oriented Prediction Error Costs," Papers 2004.10537, arXiv.org.
    10. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    11. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    12. Che-Yu Hung & Chien-Chih Wang & Shi-Woei Lin & Bernard C. Jiang, 2022. "An Empirical Comparison of the Sales Forecasting Performance for Plastic Tray Manufacturing Using Missing Data," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    13. Larissa Koupriouchina & Jean-Pierre van der Rest & Zvi Schwartz, 2023. "Judgmental Adjustments of Algorithmic Hotel Occupancy Forecasts: Does User Override Frequency Impact Accuracy at Different Time Horizons?," Tourism Economics, , vol. 29(8), pages 2143-2164, December.
    14. von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
    15. Svetlana Makarova, 2014. "Risk and Uncertainty: Macroeconomic Perspective," UCL SSEES Economics and Business working paper series 129, UCL School of Slavonic and East European Studies (SSEES).
    16. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    17. Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
    18. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    19. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Density characteristics and density forecast performance: a panel analysis," Empirical Economics, Springer, vol. 48(3), pages 1203-1231, May.
    20. Gianna Boero & Jeremy Smith & KennethF. Wallis, 2008. "Uncertainty and Disagreement in Economic Prediction: The Bank of England Survey of External Forecasters," Economic Journal, Royal Economic Society, vol. 118(530), pages 1107-1127, July.
    21. Federico Bassetti & Roberto Casarin & Marco Del Negro, 2022. "A Bayesian Approach to Inference on Probabilistic Surveys," Staff Reports 1025, Federal Reserve Bank of New York.

    More about this item

    Keywords

    Mean absolute percentage error; Asymmetric loss; Forecasting bias;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C70 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - General
    • D80 - Microeconomics - - Information, Knowledge, and Uncertainty - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:113:y:2011:i:3:p:259-262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.