IDEAS home Printed from https://ideas.repec.org/a/eee/ecolet/v150y2017icp86-90.html
   My bibliography  Save this article

Rationality and seasonality: Evidence from inflation forecasts

Author

Listed:
  • Goldstein, Nathan
  • Zilberfarb, Ben-Zion

Abstract

We examine the seasonal pattern in expectations, using a unique Israeli survey of quarterly inflation forecasts. Rationality is rejected with respect to (trivial) information about calendar quarter. Seasonal bias is strongest at shorter horizons and in a low inflation environment.

Suggested Citation

  • Goldstein, Nathan & Zilberfarb, Ben-Zion, 2017. "Rationality and seasonality: Evidence from inflation forecasts," Economics Letters, Elsevier, vol. 150(C), pages 86-90.
  • Handle: RePEc:eee:ecolet:v:150:y:2017:i:c:p:86-90
    DOI: 10.1016/j.econlet.2016.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165176516304694
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econlet.2016.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Weale, Martin, 2006. "Survey Expectations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 14, pages 715-776, Elsevier.
    2. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    3. Eugene Kandel & Ben-Zion Zilberfarb, 1999. "Differential Interpretation Of Information In Inflation Forecasts," The Review of Economics and Statistics, MIT Press, vol. 81(2), pages 217-226, May.
    4. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    5. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    6. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    7. Luis Gil‐Alana & Antonio Moreno & Fernando Pérez de Gracia, 2012. "Exploring Survey‐Based Inflation Forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(6), pages 524-539, September.
    8. Sims, Christopher A., 2003. "Implications of rational inattention," Journal of Monetary Economics, Elsevier, vol. 50(3), pages 665-690, April.
    9. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Goldstein, Nathan & Zilberfarb, Ben-Zion, 2021. "Do forecasters really care about consensus?," Economic Modelling, Elsevier, vol. 100(C).
    2. Nathan Goldstein & Ben‐Zion Zilberfarb, 2023. "The closer we get, the better we are?," Economic Inquiry, Western Economic Association International, vol. 61(2), pages 364-376, April.
    3. Abildgren, Kim & Kuchler, Andreas, 2021. "Revisiting the inflation perception conundrum," Journal of Macroeconomics, Elsevier, vol. 67(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nathan Goldstein & Ben‐Zion Zilberfarb, 2023. "The closer we get, the better we are?," Economic Inquiry, Western Economic Association International, vol. 61(2), pages 364-376, April.
    2. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    3. James M. Nason & Gregor W. Smith, 2021. "Measuring the slowly evolving trend in US inflation with professional forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 1-17, January.
    4. Iregui, Ana María & Núñez, Héctor M. & Otero, Jesús, 2021. "Testing the efficiency of inflation and exchange rate forecast revisions in a changing economic environment," Journal of Economic Behavior & Organization, Elsevier, vol. 187(C), pages 290-314.
    5. Andrade, Philippe & Crump, Richard K. & Eusepi, Stefano & Moench, Emanuel, 2016. "Fundamental disagreement," Journal of Monetary Economics, Elsevier, vol. 83(C), pages 106-128.
    6. Berge, Travis J., 2018. "Understanding survey-based inflation expectations," International Journal of Forecasting, Elsevier, vol. 34(4), pages 788-801.
    7. Wagner Piazza Gaglianone, 2017. "Empirical Findings on Inflation Expectations in Brazil: a survey," Working Papers Series 464, Central Bank of Brazil, Research Department.
    8. Andrade, Philippe & Le Bihan, Hervé, 2013. "Inattentive professional forecasters," Journal of Monetary Economics, Elsevier, vol. 60(8), pages 967-982.
    9. Hollmayr, Josef & Kühl, Michael, 2019. "Learning about banks’ net worth and the slow recovery after the financial crisis," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    10. Clements, Michael P., 2019. "Do forecasters target first or later releases of national accounts data?," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1240-1249.
    11. Goldstein, Nathan & Zilberfarb, Ben-Zion, 2021. "Do forecasters really care about consensus?," Economic Modelling, Elsevier, vol. 100(C).
    12. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    13. Conrad, Christian & Lahiri, Kajal, 2024. "Heterogeneous Expectations among Professional Forecasters," Working Papers 0754, University of Heidelberg, Department of Economics.
    14. Nolte, Ingmar & Nolte, Sandra & Pohlmeier, Winfried, 2019. "What determines forecasters’ forecasting errors?," International Journal of Forecasting, Elsevier, vol. 35(1), pages 11-24.
    15. Constantin Bürgi, 2020. "Expectation Formation and the Persistence of Shocks," Working Papers 2020-005, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Sep 2020.
    16. Manzan, Sebastiano, 2021. "Are professional forecasters Bayesian?," Journal of Economic Dynamics and Control, Elsevier, vol. 123(C).
    17. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    18. Paul Hubert, 2014. "FOMC Forecasts as a Focal Point for Private Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 46(7), pages 1381-1420, October.
    19. An, Zidong & Zheng, Xinye, 2023. "Diligent forecasters can make accurate predictions despite disagreeing with the consensus," Economic Modelling, Elsevier, vol. 125(C).
    20. Cornand, Camille & Hubert, Paul, 2020. "On the external validity of experimental inflation forecasts: A comparison with five categories of field expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 110(C).

    More about this item

    Keywords

    Rational expectations; Survey forecasts; Seasonality;
    All these keywords.

    JEL classification:

    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • E47 - Macroeconomics and Monetary Economics - - Money and Interest Rates - - - Forecasting and Simulation: Models and Applications

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecolet:v:150:y:2017:i:c:p:86-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ecolet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.