IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/2006584.html
   My bibliography  Save this paper

A new theory of forecasting

Author

Listed:
  • Manganelli, Simone

Abstract

This paper argues that forecast estimators should minimise the loss function in a statistical, rather than deterministic, way. We introduce two new elements into the classical econometric analysis: a subjective guess on the variable to be forecasted and a probability reflecting the confidence associated to it. We then propose a new forecast estimator based on a test of whether the first derivatives of the loss function evaluated at the subjective guess are statistically different from zero. We show that the classical estimator is a special case of this new estimator, and that in general the two estimators are asymptotically equivalent. We illustrate the implications of this new theory with a simple simulation, an application to GDP forecast and an example of mean-variance portfolio selection. JEL Classification: C13, C53, G11

Suggested Citation

  • Manganelli, Simone, 2006. "A new theory of forecasting," Working Paper Series 584, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:2006584
    Note: 196912
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp584.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    2. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245, Elsevier.
    3. Simone Manganelli, 2004. "Asset Allocation by Variance Sensitivity Analysis," Journal of Financial Econometrics, Oxford University Press, vol. 2(3), pages 370-389.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Granger, Clive W.J. & Machina, Mark J., 2006. "Forecasting and Decision Theory," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 2, pages 81-98, Elsevier.
    6. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    7. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keck, Alexander & Raubold, Alexander, 2006. "Forecasting trade," WTO Staff Working Papers ERSD-2006-05, World Trade Organization (WTO), Economic Research and Statistics Division.
    2. Andrés González & Kirstin Hubrich & Timo Teräsvirta, 2009. "Forecasting inflation with gradual regime shifts and exogenous information," CREATES Research Papers 2009-03, Department of Economics and Business Economics, Aarhus University.
    3. Robalo Marques, Carlos & Dias, Daniel & Santos Silva, João M. C., 2006. "Measuring the importance of the uniform nonsynchronization hypothesis," Working Paper Series 606, European Central Bank.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manganelli, Simone, 2007. "Asset allocation by penalized least squares," Working Paper Series 723, European Central Bank.
    2. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    3. Ibrahim Mohammed & Chioma Nwafor, 2014. "Stock Market Consequences of the Suspension of the Central Bank of Nigeria’s Governor," Managing Global Transitions, University of Primorska, Faculty of Management Koper, vol. 12(4 (Winter), pages 371-394.
    4. P. Kearns & A.R. Pagan, 1993. "Australian Stock Market Volatility: 1875–1987," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 163-178, June.
    5. Misund, Bård & Oglend, Atle, 2016. "Supply and demand determinants of natural gas price volatility in the U.K.: A vector autoregression approach," Energy, Elsevier, vol. 111(C), pages 178-189.
    6. Sucarrat, Genaro & Grønneberg, Steffen & Escribano, Alvaro, 2016. "Estimation and inference in univariate and multivariate log-GARCH-X models when the conditional density is unknown," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 582-594.
    7. Russell, Bill & Chowdhury, Rosen Azad, 2013. "Estimating United States Phillips curves with expectations consistent with the statistical process of inflation," Journal of Macroeconomics, Elsevier, vol. 35(C), pages 24-38.
    8. Theodore E. Nijman & Roel Beetsma, 1991. "Empirical Tests of a Simple Pricing Model for Sugar Futures," Annals of Economics and Statistics, GENES, issue 24, pages 121-131.
    9. Yang, Lixiong & Lee, Chingnun & Shie, Fu Shuen, 2014. "How close a relationship does a capital market have with other markets? A reexamination based on the equal variance test," Pacific-Basin Finance Journal, Elsevier, vol. 26(C), pages 198-226.
    10. Christian Francq & Genaro Sucarrat, 2018. "An Exponential Chi-Squared QMLE for Log-GARCH Models Via the ARMA Representation," Journal of Financial Econometrics, Oxford University Press, vol. 16(1), pages 129-154.
    11. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    12. Gregory, Allan W, 1989. "A Nonparametric Test for Autoregressive Conditional Heteroscedasticity: A Markov-Chain Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(1), pages 107-115, January.
    13. Alvaro Escribano & Genaro Sucarrat, 2011. "Automated model selection in finance: General-to-speci c modelling of the mean and volatility speci cations," Working Papers 2011-09, Instituto Madrileño de Estudios Avanzados (IMDEA) Ciencias Sociales.
    14. Naifar, Nader, 2011. "What explains default risk premium during the financial crisis? Evidence from Japan," Journal of Economics and Business, Elsevier, vol. 63(5), pages 412-430, September.
    15. Antonakakis, Nikolaos & Darby, Julia, 2012. "Forecasting Volatility in Developing Countries' Nominal Exchange Returns," MPRA Paper 40875, University Library of Munich, Germany.
    16. Adrian C. Darnell, 1994. "A Dictionary Of Econometrics," Books, Edward Elgar Publishing, number 118.
    17. Shields, Kalvinder K, 1997. "Threshold Modelling of Stock Return Volatility on Eastern European Markets," Economic Change and Restructuring, Springer, vol. 30(2-3), pages 107-125.
    18. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    19. Christian M. Hafner & Helmut Herwartz, 2009. "Testing for linear vector autoregressive dynamics under multivariate generalized autoregressive heteroskedasticity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 294-323, August.
    20. Charles, Amelie & Darne, Olivier, 2006. "Large shocks and the September 11th terrorist attacks on international stock markets," Economic Modelling, Elsevier, vol. 23(4), pages 683-698, July.

    More about this item

    Keywords

    asset allocation; Decision under uncertainty; estimation; overfitting;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:2006584. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Official Publications (email available below). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.