IDEAS home Printed from https://ideas.repec.org/a/eee/jomega/v27y1999i5p569-582.html
   My bibliography  Save this article

Data quality in neural network models: effect of error rate and magnitude of error on predictive accuracy

Author

Listed:
  • Klein, B. D.
  • Rossin, D. F.

Abstract

Neural networks have been applied in a wide variety of business domains. Although databases used in many organizations have been found to contain errors, little is known about the effect of these errors on predictions made by neural network models. The article uses a real-world example, the prediction of the net asset values of mutual funds, to investigate the effect of data quality on neural network models. The results of two experiments are reported. The first experiment shows that the error rate (ranging from 25 to 100%) and magnitude of error (5 and 10%) in data used in model prediction affect the predictive accuracy of neural networks. The second experiment shows that the error rate (ranging from 5 to 20%) and the magnitude of error (5 and 10%) in data used to build the model affect the predictive accuracy of neural networks. The findings have managerial implications for users and builders of neural networks working with databases containing errors.

Suggested Citation

  • Klein, B. D. & Rossin, D. F., 1999. "Data quality in neural network models: effect of error rate and magnitude of error on predictive accuracy," Omega, Elsevier, vol. 27(5), pages 569-582, October.
  • Handle: RePEc:eee:jomega:v:27:y:1999:i:5:p:569-582
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0305-0483(99)00019-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Donald P. Ballou & Harold L. Pazer, 1985. "Modeling Data and Process Quality in Multi-Input, Multi-Output Information Systems," Management Science, INFORMS, vol. 31(2), pages 150-162, February.
    2. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    3. Rosenberg, Barr & Houglet, Michel, 1974. "Error Rates in CRSP and Compustat Data Bases and their Implications," Journal of Finance, American Finance Association, vol. 29(4), pages 1303-1310, September.
    4. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    6. Fatemeh Zahedi, 1991. "An Introduction to Neural Networks and a Comparison with Artificial Intelligence and Expert Systems," Interfaces, INFORMS, vol. 21(2), pages 25-38, April.
    7. Masson, Egill & Wang, Yih-Jeou, 1990. "Introduction to computation and learning in artificial neural networks," European Journal of Operational Research, Elsevier, vol. 47(1), pages 1-28, July.
    8. Donald Ballou & Richard Wang & Harold Pazer & Giri Kumar Tayi, 1998. "Modeling Information Manufacturing Systems to Determine Information Product Quality," Management Science, INFORMS, vol. 44(4), pages 462-484, April.
    9. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    10. Barbara D. Klein, 1997. "How Do Actuaries Use Data Containing Errors?: Models of Error Detection and Error Correction," Information Resources Management Journal (IRMJ), IGI Global, vol. 10(4), pages 27-36, October.
    11. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    12. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    13. Bennin, Robert, 1980. "Error Rates in CRSP and COMPUSTAT: A Second Look," Journal of Finance, American Finance Association, vol. 35(5), pages 1267-1271, December.
    14. Cochrane, John H, 1991. "Production-Based Asset Pricing and the Link between Stock Returns and Economic Fluctuations," Journal of Finance, American Finance Association, vol. 46(1), pages 209-237, March.
    15. Donald P. Ballou & Harold L. Pazer, 1995. "Designing Information Systems to Optimize the Accuracy-Timeliness Tradeoff," Information Systems Research, INFORMS, vol. 6(1), pages 51-72, March.
    16. Chiang, W. -C. & Urban, T. L. & Baldridge, G. W., 1996. "A neural network approach to mutual fund net asset value forecasting," Omega, Elsevier, vol. 24(2), pages 205-215, April.
    17. Balvers, Ronald J & Cosimano, Thomas F & McDonald, Bill, 1990. "Predicting Stock Returns in an Efficient Market," Journal of Finance, American Finance Association, vol. 45(4), pages 1109-1128, September.
    18. Ferson, Wayne E & Harvey, Campbell R, 1993. "The Risk and Predictability of International Equity Returns," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 527-566.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hwarng, H. Brian, 2001. "Insights into neural-network forecasting of time series corresponding to ARMA(p,q) structures," Omega, Elsevier, vol. 29(3), pages 273-289, June.
    2. Hwarng, H. Brian & Ang, H. T., 2001. "A simple neural network for ARMA(p,q) time series," Omega, Elsevier, vol. 29(4), pages 319-333, August.
    3. Sundararaghavan, P.S. & Kunnathur, Anand & Fang, Xiao, 2010. "Sequencing questions to ferret out terrorists: Models and heuristics," Omega, Elsevier, vol. 38(1-2), pages 12-19, February.
    4. Bonfiglio, A. & Camaioni, B. & Carta, V. & Cristiano, S., 2023. "Estimating the common agricultural policy milestones and targets by neural networks," Evaluation and Program Planning, Elsevier, vol. 99(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David G. McMillan, 2003. "Non‐linear Predictability of UK Stock Market Returns," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 65(5), pages 557-573, December.
    2. Angela J. Black & David G. McMillan, 2004. "Non‐linear Predictability of Value and Growth Stocks and Economic Activity," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(3‐4), pages 439-474, April.
    3. McMillan, David G., 2001. "Nonlinear predictability of stock market returns: Evidence from nonparametric and threshold models," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 353-368, December.
    4. David McMillan, 2004. "Non-linear predictability of UK stock market returns," Money Macro and Finance (MMF) Research Group Conference 2003 63, Money Macro and Finance Research Group.
    5. Thomas D. Tallarini, Jr. & Harold H. Zhang, 2005. "External Habit and the Cyclicality of Expected Stock Returns," The Journal of Business, University of Chicago Press, vol. 78(3), pages 1023-1048, May.
    6. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    7. David McMillan & Mark Wohar, 2011. "Sum of the parts stock return forecasting: international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 21(12), pages 837-845.
    8. Chauvet, Marcelle & Potter, Simon, 2001. "Nonlinear Risk," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 621-646, September.
    9. Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
    10. Michael Cooper & Huseyin Gulen, 2006. "Is Time-Series-Based Predictability Evident in Real Time?," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1263-1292, May.
    11. Pesaran, M.H., 2010. "Predictability of Asset Returns and the Efficient Market Hypothesis," Cambridge Working Papers in Economics 1033, Faculty of Economics, University of Cambridge.
    12. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    13. Mika Vaihekoski, 1998. "Short-term returns and the predictability of Finnish stock returns," Finnish Economic Papers, Finnish Economic Association, vol. 11(1), pages 19-36, Spring.
    14. Campbell, John Y., 2003. "Consumption-based asset pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 13, pages 803-887, Elsevier.
    15. Yufeng Han, 2010. "On the Economic Value of Return Predictability," Annals of Economics and Finance, Society for AEF, vol. 11(1), pages 1-33, May.
    16. Hui Guo & Xiaowen Jiang, 2011. "Accruals and the Conditional Equity Premium," Journal of Accounting Research, Wiley Blackwell, vol. 49(1), pages 187-221, March.
    17. Boguth, Oliver & Carlson, Murray & Fisher, Adlai & Simutin, Mikhail, 2011. "Conditional risk and performance evaluation: Volatility timing, overconditioning, and new estimates of momentum alphas," Journal of Financial Economics, Elsevier, vol. 102(2), pages 363-389.
    18. Cenesizoglu, Tolga & Timmermann, Allan, 2012. "Do return prediction models add economic value?," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 2974-2987.
    19. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    20. Rapach, David E. & Wohar, Mark E. & Rangvid, Jesper, 2005. "Macro variables and international stock return predictability," International Journal of Forecasting, Elsevier, vol. 21(1), pages 137-166.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jomega:v:27:y:1999:i:5:p:569-582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/375/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.