IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v3y2020i1d10.1007_s42001-019-00057-5.html
   My bibliography  Save this article

Comparison of machine learning methods for financial time series forecasting at the examples of over 10 years of daily and hourly data of DAX 30 and S&P 500

Author

Listed:
  • Deniz Ersan

    (Kiel University)

  • Chifumi Nishioka

    (Kyoto University)

  • Ansgar Scherp

    (University of Essex)

Abstract

This article conducts a systematic comparison of three methods for predicting the direction (+/−) of financial time series using over ten years of DAX 30 and the S&P 500 datasets at daily and hourly frames. We choose the methods from representative machine learning families, particularly supervised versus unsupervised. The methods are support vector machines (SVM), artificial neural networks, and k-nearest neighbor (k-NN). We explore the influence of different training window lengths and numbers of out-of-sample predictions. Furthermore, we investigate whether kernel principle component analysis (KPCA) improves prediction, through reducing data dimensionality. Additionally, we verify whether combining machine learning methods by bootstrap aggregating outperforms single methods. Key insights from the experiment are: All machine learning methods are in principle useful to predict the direction of (+/−) financial time series. But to our surprise, increasing the window size only helps to a certain extent for hourly data, before it actually reduces the performance. The number of out-of-sample predictions had a small impact, while KPCA made a strong difference for SVM and k-NN. Finally, backtesting selected machines with a trading system on daily data revealed that the lazy learner k-NN outperforms the supervised approaches.

Suggested Citation

  • Deniz Ersan & Chifumi Nishioka & Ansgar Scherp, 2020. "Comparison of machine learning methods for financial time series forecasting at the examples of over 10 years of daily and hourly data of DAX 30 and S&P 500," Journal of Computational Social Science, Springer, vol. 3(1), pages 103-133, April.
  • Handle: RePEc:spr:jcsosc:v:3:y:2020:i:1:d:10.1007_s42001-019-00057-5
    DOI: 10.1007/s42001-019-00057-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-019-00057-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-019-00057-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gili Yen & Cheng-few Lee, 2008. "Efficient Market Hypothesis (EMH): Past, Present and Future," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 11(02), pages 305-329.
    2. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    3. C. W. J. Granger & Zhuanxin Ding, 1995. "Some Properties of Absolute Return: An Alternative Measure of Risk," Annals of Economics and Statistics, GENES, issue 40, pages 67-91.
    4. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Papers 1803.06917, arXiv.org.
    5. Justin Sirignano & Rama Cont, 2018. "Universal features of price formation in financial markets: perspectives from Deep Learning," Working Papers hal-01754054, HAL.
    6. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    7. Wei Huang & K. K. Lai & Y. Nakamori & Shouyang Wang, 2004. "Forecasting Foreign Exchange Rates With Artificial Neural Networks: A Review," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 3(01), pages 145-165.
    8. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Journal of Economic Perspectives, American Economic Association, vol. 17(1), pages 59-82, Winter.
    9. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    10. Burton G. Malkiel, 2003. "The Efficient Market Hypothesis and Its Critics," Working Papers 111, Princeton University, Department of Economics, Center for Economic Policy Studies..
    11. repec:pri:cepsud:91malkiel is not listed on IDEAS
    12. repec:adr:anecst:y:1995:i:40:p:04 is not listed on IDEAS
    13. Tay, Francis E. H. & Cao, Lijuan, 2001. "Application of support vector machines in financial time series forecasting," Omega, Elsevier, vol. 29(4), pages 309-317, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryosuke Gotoh, 2024. "Analyzing the influence of web search behavior on electricity market price: a case study of Japan electric power exchange," Journal of Computational Social Science, Springer, vol. 7(1), pages 837-876, April.
    2. Guangji Tong & Zhiwei Yin, 2022. "Adaptive Trading System of Assets for International Cooperation in Agricultural Finance Based on Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1557-1576, April.
    3. Joao Vitor Matos Goncalves & Michel Alexandre & Gilberto Tadeu Lima, 2023. "ARIMA and LSTM: A Comparative Analysis of Financial Time Series Forecasting," Working Papers, Department of Economics 2023_13, University of São Paulo (FEA-USP).
    4. Jinan Zou & Qingying Zhao & Yang Jiao & Haiyao Cao & Yanxi Liu & Qingsen Yan & Ehsan Abbasnejad & Lingqiao Liu & Javen Qinfeng Shi, 2022. "Stock Market Prediction via Deep Learning Techniques: A Survey," Papers 2212.12717, arXiv.org, revised Feb 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heni Boubaker & Giorgio Canarella & Rangan Gupta & Stephen M. Miller, 2023. "A Hybrid ARFIMA Wavelet Artificial Neural Network Model for DJIA Index Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1801-1843, December.
    2. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2019. "Time-Varying Price–Volume Relationship and Adaptive Market Efficiency: A Survey of the Empirical Literature," JRFM, MDPI, vol. 12(2), pages 1-18, June.
    3. Yardley, Ben, 2020. "The Effects of Donald Trump’s Tweets on The Stock Exchange," MPRA Paper 102578, University Library of Munich, Germany.
    4. Sheriffdeen A. Tella & Olumuyiwa G. Yinusa & Ayinde Taofeek Olusola & Saban Celik, 2011. "Global Economic Crisis And Stock Markets Efficiency: Evidence From Selected Africa Countries," Bogazici Journal, Review of Social, Economic and Administrative Studies, Bogazici University, Department of Economics, vol. 25(1), pages 139-169.
    5. Felicia Ramona Birau, 2011. "An Analysis Of Weak-Form Efficiency On The Bucharest Stock Exchange," Annals of University of Craiova - Economic Sciences Series, University of Craiova, Faculty of Economics and Business Administration, vol. 3(39), pages 194-205.
    6. Roland Rothenstein, 2018. "Quantification of market efficiency based on informational-entropy," Papers 1812.02371, arXiv.org.
    7. Shmilovici Armin & Ben-Gal Irad, 2012. "Predicting Stock Returns Using a Variable Order Markov Tree Model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(5), pages 1-33, December.
    8. Park, Cheol-Ho & Irwin, Scott H., 2004. "The Profitability Of Technical Trading Rules In Us Futures Markets: A Data Snooping Free Test," 2004 Conference, April 19-20, 2004, St. Louis, Missouri 19011, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    9. Bennett, Donyetta & Mekelburg, Erik & Williams, T.H., 2023. "BeFi meets DeFi: A behavioral finance approach to decentralized finance asset pricing," Research in International Business and Finance, Elsevier, vol. 65(C).
    10. repec:idn:journl:v:1:y:2019:i:sp1:p:1-26 is not listed on IDEAS
    11. Daniel Traian Pele & Miruna Mazurencu-Marinescu & Peter Nijkamp, 2013. "Herding Behaviour, Bubbles and Log Periodic Power Laws in Illiquid Stock Markets. A Case Study on the Bucharest Stock Exchange," Tinbergen Institute Discussion Papers 13-109/VIII, Tinbergen Institute.
    12. Mikio Ito & Akihiko Noda & Tatsuma Wada, 2016. "The evolution of stock market efficiency in the US: a non-Bayesian time-varying model approach," Applied Economics, Taylor & Francis Journals, vol. 48(7), pages 621-635, February.
    13. Darko B. Vuković & Sonja D. Radenković & Ivana Simeunović & Vyacheslav Zinovev & Milan Radovanović, 2024. "Predictive Patterns and Market Efficiency: A Deep Learning Approach to Financial Time Series Forecasting," Mathematics, MDPI, vol. 12(19), pages 1-26, September.
    14. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    15. Felicia Ramona Birău, 2012. "The Impact Of Behavioral Finance On Stock Markets," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 3, pages 45-50, September.
    16. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    17. Grosche, Stephanie, 2012. "Limitations of Granger Causality Analysis to assess the price effects from the financialization of agricultural commodity markets under bounded rationality," Discussion Papers 121868, University of Bonn, Institute for Food and Resource Economics.
    18. Nabiha Haouas, 2021. "Multifractal Analysis of the Foreign Exchange Markets Application to MENA Countries," Accounting and Finance Research, Sciedu Press, vol. 10(2), pages 1-17, May.
    19. Cheol‐Ho Park & Scott H. Irwin, 2010. "A reality check on technical trading rule profits in the U.S. futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 30(7), pages 633-659, July.
    20. Wally Tzara, 2018. "The Evolution of Security Prices Is Not Stochastic but Governed by a Physicomathematical Law," Papers 1807.10114, arXiv.org, revised Jul 2019.
    21. Aatola, Piia & Ollikka, Kimmo & Ollikainen, Markku, 2012. "Informational Efficiency of the EU ETS market – a study of price predictability and profitable trading," Working Papers 28, VATT Institute for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:3:y:2020:i:1:d:10.1007_s42001-019-00057-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.