IDEAS home Printed from https://ideas.repec.org/a/eee/finana/v35y2014icp32-45.html
   My bibliography  Save this article

Forecasting option smile dynamics

Author

Listed:
  • Le, Van
  • Zurbruegg, Ralf

Abstract

Practitioners have long tried to exploit the predictability of the option implied volatility smile. Motivated by the recent developments in the literature focusing on market-based option pricing arguments, this paper proposes the introduction of trading volume into a vector autoregressive (VAR) model to improve forecasts of the smile dynamics. The augmented VAR-volume model produces quality forecasts of the smile surface and explains its dynamic changes over time relatively well. Our results suggest that the incorporation of trading volume leads to it outperforming other alternative forecast approaches, as well as being robust to a variety of perturbations of the data and offers scope for investors to more accurately predict option implied volatility in the future.

Suggested Citation

  • Le, Van & Zurbruegg, Ralf, 2014. "Forecasting option smile dynamics," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 32-45.
  • Handle: RePEc:eee:finana:v:35:y:2014:i:c:p:32-45
    DOI: 10.1016/j.irfa.2014.07.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1057521914000982
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.irfa.2014.07.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brock, William A & LeBaron, Blake D, 1996. "A Dynamic Structural Model for Stock Return Volatility and Trading Volume," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 94-110, February.
    2. Sophie X. Ni & Jun Pan & Allen M. Poteshman, 2008. "Volatility Information Trading in the Option Market," Journal of Finance, American Finance Association, vol. 63(3), pages 1059-1091, June.
    3. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
    4. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    5. Le, Van & Zurbruegg, Ralf, 2010. "The role of trading volume in volatility forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 533-555, December.
    6. Kang, Jangkoo & Park, Hyoung-Jin, 2008. "The information content of net buying pressure: Evidence from the KOSPI 200 index option market," Journal of Financial Markets, Elsevier, vol. 11(1), pages 36-56, February.
    7. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    8. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    9. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    10. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    11. Hentschel, Ludger, 2003. "Errors in Implied Volatility Estimation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(4), pages 779-810, December.
    12. Nicolae Garleanu & Lasse Heje Pedersen & Allen M. Poteshman, 2009. "Demand-Based Option Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 22(10), pages 4259-4299, October.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Harris, Milton & Raviv, Artur, 1993. "Differences of Opinion Make a Horse Race," The Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 473-506.
    15. Iori, Giulia, 2002. "A microsimulation of traders activity in the stock market: the role of heterogeneity, agents' interactions and trade frictions," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 269-285, October.
    16. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    17. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    18. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    19. Kalok Chan & Y. Peter Chung & Wai-Ming Fong, 2002. "The Informational Role of Stock and Option Volume," The Review of Financial Studies, Society for Financial Studies, vol. 15(4), pages 1049-1075.
    20. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
    21. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    22. Christoffersen, Peter & Jacobs, Kris, 2004. "The importance of the loss function in option valuation," Journal of Financial Economics, Elsevier, vol. 72(2), pages 291-318, May.
    23. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    24. R. Glen Donaldson & Mark J. Kamstra, 2005. "Volatility Forecasts, Trading Volume, And The Arch Versus Option‐Implied Volatility Trade‐Off," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 28(4), pages 519-538, December.
    25. Robert Battalio & Paul Schultz, 2011. "Regulatory Uncertainty and Market Liquidity: The 2008 Short Sale Ban's Impact on Equity Option Markets," Journal of Finance, American Finance Association, vol. 66(6), pages 2013-2053, December.
    26. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    27. repec:bla:jfinan:v:59:y:2004:i:2:p:711-753 is not listed on IDEAS
    28. Copeland, Thomas E, 1976. "A Model of Asset Trading under the Assumption of Sequential Information Arrival," Journal of Finance, American Finance Association, vol. 31(4), pages 1149-1168, September.
    29. repec:bla:jfinan:v:43:y:1988:i:4:p:949-64 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
    2. Shengli Chen & Zili Zhang, 2019. "Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism," Papers 1912.11059, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    2. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    3. Shengli Chen & Zili Zhang, 2019. "Forecasting Implied Volatility Smile Surface via Deep Learning and Attention Mechanism," Papers 1912.11059, arXiv.org.
    4. Le, Van & Zurbruegg, Ralf, 2010. "The role of trading volume in volatility forecasting," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 20(5), pages 533-555, December.
    5. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    6. Tao Li, 2013. "Investors' Heterogeneity and Implied Volatility Smiles," Management Science, INFORMS, vol. 59(10), pages 2392-2412, October.
    7. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    8. Bernales, Alejandro & Guidolin, Massimo, 2015. "Learning to smile: Can rational learning explain predictable dynamics in the implied volatility surface?," Journal of Financial Markets, Elsevier, vol. 26(C), pages 1-37.
    9. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    10. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    11. Guidolin, Massimo & Wang, Kai, 2023. "The empirical performance of option implied volatility surface-driven optimal portfolios," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 618(C).
    12. Kaeck, Andreas & Seeger, Norman J., 2020. "VIX derivatives, hedging and vol-of-vol risk," European Journal of Operational Research, Elsevier, vol. 283(2), pages 767-782.
    13. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    14. Yue, Tian & Gehricke, Sebastian A. & Zhang, Jin E. & Pan, Zheyao, 2021. "The implied volatility smirk in the Chinese equity options market," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    15. Yamani, Ehab, 2023. "Return–volume nexus in financial markets: A survey of research," Research in International Business and Finance, Elsevier, vol. 65(C).
    16. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2011. "How important is the term structure in implied volatility surface modeling? Evidence from foreign exchange options," Journal of International Money and Finance, Elsevier, vol. 30(4), pages 623-640, June.
    17. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    18. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    19. Elyas Elyasiani & Silvia Muzzioli & Alessio Ruggieri, 2016. "Forecasting and pricing powers of option-implied tree models: Tranquil and volatile market conditions," Department of Economics 0099, University of Modena and Reggio E., Faculty of Economics "Marco Biagi".
    20. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.

    More about this item

    Keywords

    Volume; Implied volatility; Option smile; Forecasting; VAR models;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finana:v:35:y:2014:i:c:p:32-45. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620166 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.