IDEAS home Printed from https://ideas.repec.org/p/nuf/econwp/2101.html
   My bibliography  Save this paper

Smooth Robust Multi-Horizon Forecasts

Author

Listed:
  • Andrew B. Martinez

    (Dept of Economics and Institute for New Economic Thinking at the Oxford Martin School, University of Oxford)

  • Jennifer L. Castle

    (Magdalen College, Climate Econometrics and Institute for New Economic Thinking at the Oxford Martin School, University of Oxford)

  • David F. Hendry

    (Nuffield College, Climate Econometrics and Institute for New Economic Thinking at the Oxford Martin School, University of Oxford)

Abstract

We investigate whether smooth robust methods for forecasting can help mitigate pronounced and persistent failure across multiple forecast horizons. We demonstrate that naive predictors are interpretable as local estimators of the long-run relationship with the advantage of adapting quickly after a break, but at a cost of additional forecast error variance. Smoothing over naive estimates helps retain these advantages while reducing the costs, especially for longer forecast horizons. We derive the performance of these predictors after a location shift, and confirm the results using simulations. We apply smooth methods to forecasts of U.K. productivity and U.S. 10-year Treasury yields and show that they can dramatically reduce persistent forecast failure exhibited by forecasts from macroeconomic models and professional forecasters.

Suggested Citation

  • Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2021. "Smooth Robust Multi-Horizon Forecasts," Economics Papers 2021-W01, Economics Group, Nuffield College, University of Oxford.
  • Handle: RePEc:nuf:econwp:2101
    as

    Download full text from publisher

    File URL: https://www.nuffield.ox.ac.uk/economics/Papers/2021/2021W01_ABMJLCDFHSR%202020-12-21.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    2. Cooper, J Phillip & Nelson, Charles R, 1975. "The Ex Ante Prediction Performance of the St. Louis and FRB-MIT-PENN Econometric Models and Some Results on Composite Predictors," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 7(1), pages 1-32, February.
    3. Castle, Jennifer L. & Clements, Michael P. & Hendry, David F., 2015. "Robust approaches to forecasting," International Journal of Forecasting, Elsevier, vol. 31(1), pages 99-112.
    4. Hendry, David F., 2018. "Deciding between alternative approaches in macroeconomics," International Journal of Forecasting, Elsevier, vol. 34(1), pages 119-135.
    5. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry & Felix Pretis, 2015. "Detecting Location Shifts during Model Selection by Step-Indicator Saturation," Econometrics, MDPI, vol. 3(2), pages 1-25, April.
    6. Laurence Ball & Sandeep Mazumder, 2011. "Inflation Dynamics and the Great Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 42(1 (Spring), pages 337-405.
    7. Sean Holly (ed.), 1994. "Money, Inflation And Employment," Books, Edward Elgar Publishing, number 230.
    8. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    9. Kladívko, Kamil & Österholm, Pär, 2021. "Do market participants’ forecasts of financial variables outperform the random-walk benchmark?," Finance Research Letters, Elsevier, vol. 40(C).
    10. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    11. John Y. Campbell & Carolin Pflueger & Luis M. Viceira, 2020. "Macroeconomic Drivers of Bond and Equity Risks," Journal of Political Economy, University of Chicago Press, vol. 128(8), pages 3148-3185.
    12. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    13. Giraitis, Liudas & Kapetanios, George & Price, Simon, 2013. "Adaptive forecasting in the presence of recent and ongoing structural change," Journal of Econometrics, Elsevier, vol. 177(2), pages 153-170.
    14. Michael D. Bauer & Glenn D. Rudebusch, 2013. "What caused the decline in long-term yields?," FRBSF Economic Letter, Federal Reserve Bank of San Francisco, issue july8.
    15. Jonathan H. Wright, 2013. "Evaluating Real‐Time Var Forecasts With An Informative Democratic Prior," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 762-776, August.
    16. Hendry, David F., 2006. "Robustifying forecasts from equilibrium-correction systems," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 399-426.
    17. David F. Hendry & Michael P. Clements, 2004. "Pooling of forecasts," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
    18. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    19. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    20. Nelson, Charles R, 1972. "The Prediction Performance of the FRB-MIT-PENN Model of the U.S. Economy," American Economic Review, American Economic Association, vol. 62(5), pages 902-917, December.
    21. Andrew Atkeson & Lee E. Ohanian, 2001. "Are Phillips curves useful for forecasting inflation?," Quarterly Review, Federal Reserve Bank of Minneapolis, vol. 25(Win), pages 2-11.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Andrew B. Martinez, 2020. "Extracting Information from Different Expectations," Working Papers 2020-008, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    4. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2024. "Improving models and forecasts after equilibrium-mean shifts," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1085-1100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew B. Martinez & Jennifer L. Castle & David F. Hendry, 2022. "Smooth Robust Multi-Horizon Forecasts," Advances in Econometrics, in: Essays in Honor of M. Hashem Pesaran: Prediction and Macro Modeling, volume 43, pages 143-165, Emerald Group Publishing Limited.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
    4. Ericsson, Neil R., 2017. "Economic forecasting in theory and practice: An interview with David F. Hendry," International Journal of Forecasting, Elsevier, vol. 33(2), pages 523-542.
    5. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    6. Jeronymo Marcondes Pinto & Jennifer L. Castle, 2022. "Machine Learning Dynamic Switching Approach to Forecasting in the Presence of Structural Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 129-157, July.
    7. Castle, Jennifer L. & Doornik, Jurgen A. & Hendry, David F., 2024. "Improving models and forecasts after equilibrium-mean shifts," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1085-1100.
    8. Markiewicz, Agnieszka & Pick, Andreas, 2014. "Adaptive learning and survey data," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PB), pages 685-707.
    9. Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
    10. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    11. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    12. Jos Jansen & Jasper de Winter, 2016. "Improving model-based near-term GDP forecasts by subjective forecasts: A real-time exercise for the G7 countries," DNB Working Papers 507, Netherlands Central Bank, Research Department.
    13. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    14. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    15. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    16. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    17. Christopher G. Gibbs, 2017. "Forecast combination, non-linear dynamics, and the macroeconomy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 653-686, March.
    18. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    19. Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
    20. Laura Carabotta & Peter Claeys, 2024. "Combine to compete: Improving fiscal forecast accuracy over time," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 948-982, July.

    More about this item

    Keywords

    Location Shifts; Long differencing; Productivity forecasts; Robust forecasts. JEL codes: C51; C53;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nuf:econwp:2101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Maxine Collett (email available below). General contact details of provider: https://www.nuffield.ox.ac.uk/economics/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.