IDEAS home Printed from https://ideas.repec.org/a/jof/jforec/v25y2006i2p77-100.html
   My bibliography  Save this article

A Bayesian nonlinear support vector machine error correction model

Author

Listed:
  • Carine Brasseur

    (Fortis Bank Brussels, Belgium)

  • Marcelo Espinoza

    (Katholieke Universiteit Leuven, Belgium)

  • Johan A. K. Suykens

    (Katholieke Universiteit Leuven, Belgium)

  • Tony Van Gestel
  • Bart Baesens

    (School of Management, University of Southampton, UK)

  • Bart De Moor

    (Katholieke Universiteit Leuven, Belgium)

Abstract

The use of linear error correction models based on stationarity and cointegration analysis, typically estimated with least squares regression, is a common technique for financial time series prediction. In this paper, the same formulation is extended to a nonlinear error correction model using the idea of a kernel-based implicit nonlinear mapping to a high-dimensional feature space in which linear model formulations are specified. Practical expressions for the nonlinear regression are obtained in terms of the positive definite kernel function by solving a linear system. The nonlinear least squares support vector machine model is designed within the Bayesian evidence framework that allows us to find appropriate trade-offs between model complexity and in-sample model accuracy. From straightforward primal-dual reasoning, the Bayesian framework allows us to derive error bars on the prediction in a similar way as for linear models and to perform hyperparameter and input selection. Starting from the results of the linear modelling analysis, the Bayesian kernel-based prediction is successfully applied to out-of-sample prediction of an aggregated equity price index for the European chemical sector. Copyright © 2006 John Wiley & Sons, Ltd.

Suggested Citation

  • Carine Brasseur & Marcelo Espinoza & Johan A. K. Suykens & Tony Van Gestel & Bart Baesens & Bart De Moor, 2006. "A Bayesian nonlinear support vector machine error correction model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 77-100.
  • Handle: RePEc:jof:jforec:v:25:y:2006:i:2:p:77-100
    DOI: 10.1002/for.975
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/for.975
    File Function: Link to full text; subscription required
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    2. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    3. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    4. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    5. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    6. Hutchinson, James M & Lo, Andrew W & Poggio, Tomaso, 1994. "A Nonparametric Approach to Pricing and Hedging Derivative Securities via Learning Networks," Journal of Finance, American Finance Association, vol. 49(3), pages 851-889, July.
    7. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    8. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    9. repec:bla:jfinan:v:55:y:2000:i:4:p:1705-1770 is not listed on IDEAS
    10. Granger, C. W. J. & Newbold, P., 1974. "Spurious regressions in econometrics," Journal of Econometrics, Elsevier, vol. 2(2), pages 111-120, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flavio Barboza & Geraldo Nunes Silva & José Augusto Fiorucci, 2023. "A review of artificial intelligence quality in forecasting asset prices," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(7), pages 1708-1728, November.
    2. Haoyuan, Shen & Yizhong, Ma & Chenglong, Lin & Jian, Zhou & Lijun, Liu, 2023. "Hierarchical Bayesian support vector regression with model parameter calibration for reliability modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Zhenwei Li & Jing Han & Yuping Song, 2020. "On the forecasting of high‐frequency financial time series based on ARIMA model improved by deep learning," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1081-1097, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pär Österholm, 2005. "The Taylor Rule: A Spurious Regression?," Bulletin of Economic Research, Wiley Blackwell, vol. 57(3), pages 217-247, July.
    2. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2017. "International stock return predictability: Evidence from new statistical tests," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 97-113.
    3. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    4. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, September.
    5. Bardsen, Gunnar & Eitrheim, Oyvind & Jansen, Eilev S. & Nymoen, Ragnar, 2005. "The Econometrics of Macroeconomic Modelling," OUP Catalogue, Oxford University Press, number 9780199246502.
    6. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911, January.
    7. Alizadeh, Amir H. & Nomikos, Nikos K., 2007. "Investment timing and trading strategies in the sale and purchase market for ships," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 126-143, January.
    8. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    9. Yap, Wei Yim & Lam, Jasmine S.L., 2006. "Competition dynamics between container ports in East Asia," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(1), pages 35-51, January.
    10. Nicholas Taylor, 1998. "Precious metals and inflation," Applied Financial Economics, Taylor & Francis Journals, vol. 8(2), pages 201-210.
    11. Roberto Cellini & Tiziana Cuccia, 2013. "Museum and monument attendance and tourism flow: a time series analysis approach," Applied Economics, Taylor & Francis Journals, vol. 45(24), pages 3473-3482, August.
    12. Erie Febrian & Aldrin Herwany, 2009. "Volatility Forecasting Models and Market Co-Integration: A Study on South-East Asian Markets," Working Papers in Economics and Development Studies (WoPEDS) 200911, Department of Economics, Padjadjaran University, revised Sep 2009.
    13. Ekaterini Panopoulou, 2005. "A Resolution of the Fisher Effect Puzzle: A Comparison of Estimators," The Institute for International Integration Studies Discussion Paper Series iiisdp067, IIIS.
    14. Caner Demir, 2019. "Macroeconomic Determinants of Stock Market Fluctuations: The Case of BIST-100," Economies, MDPI, vol. 7(1), pages 1-14, February.
    15. Stephan Schulmeister, 2000. "Technical Analysis and Exchange Rate Dynamics," WIFO Studies, WIFO, number 25857.
    16. Nasr, G. E. & Badr, E. A. & Dibeh, G., 2000. "Econometric modeling of electricity consumption in post-war Lebanon," Energy Economics, Elsevier, vol. 22(6), pages 627-640, December.
    17. Lee, Chingnun & Shie, Fu Shuen & Chang, Chiao Yi, 2012. "How close a relationship does a capital market have with other such markets? The case of Taiwan from the Asian financial crisis," Pacific-Basin Finance Journal, Elsevier, vol. 20(3), pages 349-362.
    18. Osamah M. Al-Khazali, 2003. "Stock Prices, Inflation, and Output: Evidence from the Emerging Markets," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 2(3), pages 287-314, September.
    19. PHILIP E.T. LEWIS & GARRY A. MacDONALD, 1993. "Testing for Equilibrium in the Australian Wage Equation," The Economic Record, The Economic Society of Australia, vol. 69(3), pages 295-304, September.
    20. Hongbo Liu & Shuanglu Liang, 2019. "The Nexus between Energy Consumption, Biodiversity, and Economic Growth in Lancang-Mekong Cooperation (LMC): Evidence from Cointegration and Granger Causality Tests," IJERPH, MDPI, vol. 16(18), pages 1-15, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:jof:jforec:v:25:y:2006:i:2:p:77-100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley-Blackwell Digital Licensing or Christopher F. Baum (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.