IDEAS home Printed from https://ideas.repec.org/a/voj/journl/v63y2016i3p273-291id25.html
   My bibliography  Save this article

Does Debt Ceiling and Government Shutdown Help in Forecasting the US Equity Risk Premium?

Author

Listed:
  • Goodness C. Aye
  • Frederick W. Deale
  • Rangan Gupta

Abstract

This article evaluates the predictability of the equity risk premium in the United States by comparing the individual and complementary predictive power of macroeconomic variables and technical indicators using a comprehensive set of 16 economic and 14 technical predictors over a monthly out-of-sample period of 1995:01 to 2012:12 and an in-sample period of 1986:01-1994:12. In order to do so we consider, in addition to the set of variables used in Christopher J. Neely et al. (2013) and using a more recent dataset, the forecasting ability of two other important variables namely government shutdown and debt ceiling. Our results show that one of the newly added variables namely government shutdown provides statistically significant out-of-sample predictive power over the equity risk premium relative to the historical average. Most of the variables, including government shutdown, also show significant economic gains for a risk averse investor especially during recessions. Key words: Equity risk premium forecasting, Debt ceiling, Government shutdown, Out-of-sample forecasts, Asset allocation.JEL: C38, C53, C58, E32, G11, G12, G17.

Suggested Citation

  • Goodness C. Aye & Frederick W. Deale & Rangan Gupta, 2016. "Does Debt Ceiling and Government Shutdown Help in Forecasting the US Equity Risk Premium?," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(3), pages 273-291.
  • Handle: RePEc:voj:journl:v:63:y:2016:i:3:p:273-291:id:25
    as

    Download full text from publisher

    File URL: https://panoeconomicus.org/index.php/jorunal/article/view/25/24
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Dragana M. Đurić, 2006. "Some of the Unanswered Questions in Finance," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 53(2), pages 223-230, June.
    3. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    4. Peter Reinhard Hansen & Allan Timmermann, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," CREATES Research Papers 2012-43, Department of Economics and Business Economics, Aarhus University.
    5. Nippani, Srinivas & Smith, Stanley D., 2010. "The increasing default risk of US Treasury securities due to the financial crisis," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2472-2480, October.
    6. John Y. Campbell, 2000. "Asset Pricing at the Millennium," Journal of Finance, American Finance Association, vol. 55(4), pages 1515-1567, August.
    7. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    8. repec:ipg:wpaper:2013-020 is not listed on IDEAS
    9. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1413, August.
    10. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    11. Campbell, John Y., 1999. "Asset prices, consumption, and the business cycle," Handbook of Macroeconomics, in: J. B. Taylor & M. Woodford (ed.), Handbook of Macroeconomics, edition 1, volume 1, chapter 19, pages 1231-1303, Elsevier.
    12. Nikolaos Giannellis & Angelos Kanas & Athanasios P. Papadopoulos, 2010. "Asymmetric Volatility Spillovers between Stock Market and Real Activity: Evidence from the UK and the US," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 57(4), pages 429-445, December.
    13. Balduzzi, Pierluigi & Lynch, Anthony W., 1999. "Transaction costs and predictability: some utility cost calculations," Journal of Financial Economics, Elsevier, vol. 52(1), pages 47-78, April.
    14. Ferreira, Miguel A. & Santa-Clara, Pedro, 2011. "Forecasting stock market returns: The sum of the parts is more than the whole," Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
    15. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    16. repec:bla:jfinan:v:58:y:2003:i:4:p:1393-1414 is not listed on IDEAS
    17. Cristiana Tudor, 2011. "Changes in Stock Markets Interdependencies as a Result of the Global Financial Crisis: Empirical Investigation on the CEE Region," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 58(4), pages 525-543, December.
    18. Gupta, Rangan & Hammoudeh, Shawkat & Modise, Mampho P. & Nguyen, Duc Khuong, 2014. "Can economic uncertainty, financial stress and consumer sentiments predict U.S. equity premium?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 367-378.
    19. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    20. Mele, Antonio, 2007. "Asymmetric stock market volatility and the cyclical behavior of expected returns," Journal of Financial Economics, Elsevier, vol. 86(2), pages 446-478, November.
    21. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    22. Simin, Timothy, 2008. "The Poor Predictive Performance of Asset Pricing Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(2), pages 355-380, June.
    23. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    24. repec:ipg:wpaper:20 is not listed on IDEAS
    25. David E. Rapach & Mark E. Wohar, 2005. "Valuation ratios and long‐horizon stock price predictability," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 327-344, March.
    26. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    27. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    28. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goodness C. Aye & Frederick W. Deale & Rangan Gupta, 2016. "Does Debt Ceiling and Government Shutdown Help in Forecasting the US Equity Risk Premium?," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 63(3), pages 273-291, June.
    2. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    3. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    4. Gupta, Rangan & Hammoudeh, Shawkat & Modise, Mampho P. & Nguyen, Duc Khuong, 2014. "Can economic uncertainty, financial stress and consumer sentiments predict U.S. equity premium?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 367-378.
    5. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    6. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    7. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    8. Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016. "Short interest and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
    9. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.
    10. Zhao, Albert Bo & Cheng, Tingting, 2022. "Stock return prediction: Stacking a variety of models," Journal of Empirical Finance, Elsevier, vol. 67(C), pages 288-317.
    11. Tsiakas, Ilias & Li, Jiahan & Zhang, Haibin, 2020. "Equity premium prediction and the state of the economy," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 75-95.
    12. Gebka, Bartosz & Wohar, Mark E., 2019. "Stock return distribution and predictability: Evidence from over a century of daily data on the DJIA index," International Review of Economics & Finance, Elsevier, vol. 60(C), pages 1-25.
    13. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.
    14. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    15. Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
    16. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    17. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    18. Ahmed, Shamim & Liu, Xiaoquan & Valente, Giorgio, 2016. "Can currency-based risk factors help forecast exchange rates?," International Journal of Forecasting, Elsevier, vol. 32(1), pages 75-97.
    19. repec:ipg:wpaper:2013-020 is not listed on IDEAS
    20. Liu, Li & Ma, Feng & Wang, Yudong, 2015. "Forecasting excess stock returns with crude oil market data," Energy Economics, Elsevier, vol. 48(C), pages 316-324.
    21. Gonçalo Faria & Fabio Verona, 2016. "Forecasting the equity risk premium with frequency-decomposed predictors," Working Papers de Economia (Economics Working Papers) 06, Católica Porto Business School, Universidade Católica Portuguesa.

    More about this item

    Keywords

    : Equity risk premium forecasting; Debt ceiling; Government shutdown; Out-of-sample forecasts; Asset allocation;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:voj:journl:v:63:y:2016:i:3:p:273-291:id:25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ivana Horvat (email available below). General contact details of provider: https://panoeconomicus.org/index.php/jorunal/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.