Modeling and forecasting interval time series with threshold models
Author
Abstract
Suggested Citation
DOI: 10.1007/s11634-014-0170-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zou, Hui & Yang, Yuhong, 2004. "Combining time series models for forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 69-84.
- Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007.
"Contemporaneous threshold autoregressive models: Estimation, testing and forecasting,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
- Michael J. Dueker & Martin Sola & Fabio Spagnolo, 2006. "Contemporaneous threshold autoregressive models: estimation, testing and forecasting," Working Papers 2003-024, Federal Reserve Bank of St. Louis.
- Michael Dueker & Martin Sola & Fabio Spagnolo, 2007. "Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting," Discussion Papers 5_2007, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Michael Dueker & Martin Sola & Fabio Spagnolo, 2006. "Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting," Department of Economics Working Papers 2006-04, Universidad Torcuato Di Tella.
- Javier Arroyo & Rosa Espínola & Carlos Maté, 2011. "Different Approaches to Forecast Interval Time Series: A Comparison in Finance," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 169-191, February.
- Eitrheim, Oyvind & Terasvirta, Timo, 1996.
"Testing the adequacy of smooth transition autoregressive models,"
Journal of Econometrics, Elsevier, vol. 74(1), pages 59-75, September.
- Eitrheim, Øyvind & Teräsvirta, Timo, 1995. "Testing the Adequacy of Smooth Transition Autoregressive Models," SSE/EFI Working Paper Series in Economics and Finance 56, Stockholm School of Economics.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Yin-Wong Cheung, 2007.
"An empirical model of daily highs and lows,"
International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 12(1), pages 1-20.
- Yin-Wong Cheung, 2006. "An Empirical Model of Daily Highs and Lows," CESifo Working Paper Series 1695, CESifo.
- Yin-wong Cheung, 2006. "An Empirical Model of Daily Highs and Lows," Working Papers 072006, Hong Kong Institute for Monetary Research.
- Dueker, Michael J. & Psaradakis, Zacharias & Sola, Martin & Spagnolo, Fabio, 2011.
"Multivariate contemporaneous-threshold autoregressive models,"
Journal of Econometrics, Elsevier, vol. 160(2), pages 311-325, February.
- Michael J. Dueker & Zacharias Psaradakis & Martin Sola & Fabio Spagnolo, 2007. "Multivariate contemporaneous threshold autoregressive models," Working Papers 2007-019, Federal Reserve Bank of St. Louis.
- Michael Dueker & Zacharias Psaradakis & Martin Sola & Fabio Spagnolo, 2009. "Multivariate Contemporaneous Threshold Autoregressive Models," Department of Economics Working Papers 2009-03, Universidad Torcuato Di Tella.
- Michael J. Dueker & Zacharias Psaradakis & Martin Sola & Fabio Spagnolo, 2010. "Multivariate Contemporaneous-Threshold Autoregressive Models," UFAE and IAE Working Papers 817.10, Unitat de Fonaments de l'Anàlisi Econòmica (UAB) and Institut d'Anàlisi Econòmica (CSIC).
- repec:bla:ecorec:v:77:y:2001:i:237:p:160-66 is not listed on IDEAS
- Clements, Michael P & Smith, Jeremy, 1999.
"A Monte Carlo Study of the Forecasting Performance of Empirical SETAR Models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 123-141, March-Apr.
- Clements, Michael P & Smith, Jeremy, 1996. "A Monte Carlo Study of the Forecasting Performance of Empirical Setar Models," The Warwick Economics Research Paper Series (TWERPS) 464, University of Warwick, Department of Economics.
- Clementrs, Michael P. & Smith, Jeremy, 1997. "A Monte Carlo study of the forecasting performance of empirical SETAR models," Economic Research Papers 268734, University of Warwick - Department of Economics.
- Bai, Jushan, 1997.
"Estimating Multiple Breaks One at a Time,"
Econometric Theory, Cambridge University Press, vol. 13(3), pages 315-352, June.
- Jushan Bai, 1995. "Estimating Multiple Breaks One at a Time," Working papers 95-18, Massachusetts Institute of Technology (MIT), Department of Economics.
- Gonzalo, Jesus & Pitarakis, Jean-Yves, 2002. "Estimation and model selection based inference in single and multiple threshold models," Journal of Econometrics, Elsevier, vol. 110(2), pages 319-352, October.
- Beckers, Stan, 1983. "Variances of Security Price Returns Based on High, Low, and Closing Prices," The Journal of Business, University of Chicago Press, vol. 56(1), pages 97-112, January.
- Teräsvirta, Timo, 1996. "Smooth Transition Models," SSE/EFI Working Paper Series in Economics and Finance 132, Stockholm School of Economics.
- Hansen, Bruce E, 1996.
"Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis,"
Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
- Hansen, B.E., 1991. "Inference when a Nuisance Parameter is Not Identified Under the Null Hypothesis," RCER Working Papers 296, University of Rochester - Center for Economic Research (RCER).
- Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
- Pitarakis Jean-Yves, 2006.
"Model Selection Uncertainty and Detection of Threshold Effects,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 10(1), pages 1-30, March.
- Jean-Yves Pitarakis, 2004. "Model Selection Uncertainty and Detection of Threshold Effecs," Econometrics 0409013, University Library of Munich, Germany.
- Ólan T. Henry & Nilss Olekalns & Peter M. Summers, 2001. "Exchange Rate Instability: A Threshold Autoregressive Approach," The Economic Record, The Economic Society of Australia, vol. 77(237), pages 160-166, June.
- Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
- Hansen Bruce E., 1997.
"Inference in TAR Models,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 2(1), pages 1-16, April.
- Tom Doan, "undated". "THRESHTEST: RATS procedure to perform Hansen's Test for Threshold Break," Statistical Software Components RTS00210, Boston College Department of Economics.
- Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009.
"Non-linear predictability in stock and bond returns: When and where is it exploitable?,"
International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
- Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2009. "Non-linear predictability in stock and bond returns: when and where is it exploitable?," Working Papers 2008-010, Federal Reserve Bank of St. Louis.
- Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
- Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Miguel de Carvalho & Gabriel Martos, 2022. "Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 167-180, January.
- Wei Lin & Gloria González‐Rivera, 2019.
"Extreme returns and intensity of trading,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1121-1140, November.
- Gloria Gonzalez-Rivera & Wei Lin, 2016. "Extreme Returns and Intensity of Trading," Working Papers 201607, University of California at Riverside, Department of Economics.
- Gloria Gonzalez-Rivera & Wei Lin, 2017. "Extreme Returns and Intensity of Trading," Working Papers 201801, University of California at Riverside, Department of Economics.
- Sun, Yuying & Zhang, Xinyu & Wan, Alan T.K. & Wang, Shouyang, 2022. "Model averaging for interval-valued data," European Journal of Operational Research, Elsevier, vol. 301(2), pages 772-784.
- Davide Astolfi & Francesco Castellani, 2019. "Wind Turbine Power Curve Upgrades: Part II," Energies, MDPI, vol. 12(8), pages 1-20, April.
- Gloria Gonzalez‐Rivera & Yun Luo & Esther Ruiz, 2020.
"Prediction regions for interval‐valued time series,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 373-390, June.
- Gloria Gonzalez-Rivera & Yun Luo & Esther Ruiz, 2018. "Prediction Regions for Interval-valued Time Series," Working Papers 201817, University of California at Riverside, Department of Economics.
- Gloria Gonzalez-Rivera & Yun Luo & Esther Ruiz, 2019. "Prediction Regions for Interval-valued Time Series," Working Papers 201921, University of California at Riverside, Department of Economics.
- González-Rivera, Gloria & Luo, Yun, 2019. "Prediction regions for interval-valued time series," DES - Working Papers. Statistics and Econometrics. WS 29054, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Huang, Wenyang & Gao, Tianxiao & Hao, Yun & Wang, Xiuqing, 2023. "Transformer-based forecasting for intraday trading in the Shanghai crude oil market: Analyzing open-high-low-close prices," Energy Economics, Elsevier, vol. 127(PA).
- Lin, Wei & González-Rivera, Gloria, 2016.
"Interval-valued time series models: Estimation based on order statistics exploring the Agriculture Marketing Service data,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 694-711.
- Gloria Gonzalez-Rivera & Wei Lin, 2015. "Interval-valued Time Series Models: Estimation based on Order Statistics. Exploring the Agriculture Marketing Service Data," Working Papers 201505, University of California at Riverside, Department of Economics.
- Cheng, Zishu & Li, Mingchen & Sun, Yuying & Hong, Yongmiao & Wang, Shouyang, 2024. "Climate change and crude oil prices: An interval forecast model with interval-valued textual data," Energy Economics, Elsevier, vol. 134(C).
- Leandro Maciel, 2020. "Technical analysis based on high and low stock prices forecasts: evidence for Brazil using a fractionally cointegrated VAR model," Empirical Economics, Springer, vol. 58(4), pages 1513-1540, April.
- Sun, Yuying & Han, Ai & Hong, Yongmiao & Wang, Shouyang, 2018. "Threshold autoregressive models for interval-valued time series data," Journal of Econometrics, Elsevier, vol. 206(2), pages 414-446.
- Buansing, T.S. Tuang & Golan, Amos & Ullah, Aman, 2020.
"An information-theoretic approach for forecasting interval-valued SP500 daily returns,"
International Journal of Forecasting, Elsevier, vol. 36(3), pages 800-813.
- T.S. Tuang Buansing & Amos Golan & Aman Ullah, 2019. "Information-Theoretic Approach for Forecasting Interval-Valued SP500 Daily Returns," Working Papers 201922, University of California at Riverside, Department of Economics.
- Gloria Gonzalez-Rivera & Wei Lin, 2014. "Interval-valued Time Series: Model Estimation based on Order Statistics," Working Papers 201429, University of California at Riverside, Department of Economics.
- Yan, Zichun & Tian, Fangzhu & Sun, Yuying & Wang, Shouyang, 2024. "A time-frequency-based interval decomposition ensemble method for forecasting gasoil prices under the trend of low-carbon development," Energy Economics, Elsevier, vol. 134(C).
- Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Paulo M.M. Rodrigues & Nazarii Salish, 2011. "Modeling and Forecasting Interval Time Series with Threshold Models: An Application to S&P500 Index Returns," Working Papers w201128, Banco de Portugal, Economics and Research Department.
- Terasvirta, Timo, 2006.
"Forecasting economic variables with nonlinear models,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457,
Elsevier.
- Teräsvirta, Timo, 2005. "Forecasting economic variables with nonlinear models," SSE/EFI Working Paper Series in Economics and Finance 598, Stockholm School of Economics, revised 29 Dec 2005.
- Franses,Philip Hans & Dijk,Dick van, 2000.
"Non-Linear Time Series Models in Empirical Finance,"
Cambridge Books,
Cambridge University Press, number 9780521779654, September.
- Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521770415, January.
- LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
- Emilio Zanetti Chini, 2013.
"Generalizing smooth transition autoregressions,"
CREATES Research Papers
2013-32, Department of Economics and Business Economics, Aarhus University.
- Emilio Zanetti Chini, 2017. "Generalizing Smooth Transition Autoregressions," DEM Working Papers Series 138, University of Pavia, Department of Economics and Management.
- Emilio Zanetti Chini, 2013. "Generalizing smooth transition autoregressions," CEIS Research Paper 294, Tor Vergata University, CEIS, revised 25 Sep 2014.
- Emilio Zanetti Chini, 2016. "Generalizing smooth transition autoregressions," DEM Working Papers Series 114, University of Pavia, Department of Economics and Management.
- Carlo Altavilla & Matteo Ciccarelli, 2006.
"Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro Area,"
Discussion Papers
7_2006, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Matteo Ciccarelli & Carlo Altavilla, 2007. "Inflation Forecasts, Monetary Policy and Unemployment Dynamics: Evidence from the US and the Euro area," 2007 Meeting Papers 315, Society for Economic Dynamics.
- Ciccarelli, Matteo & Altavilla, Carlo, 2007. "Inflation Forecasts, monetary policy and unemployment dynamics: evidence from the US and the euro area," Working Paper Series 725, European Central Bank.
- Dick van Dijk & Philip Hans Franses & Michael P. Clements & Jeremy Smith, 2003.
"On SETAR non-linearity and forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 22(5), pages 359-375.
- Clements, M.P. & Franses, Ph.H.B.F. & Smith, J., 1999. "On SETAR non- linearity and forecasting," Econometric Institute Research Papers EI 9914-/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Dueker, Michael J. & Sola, Martin & Spagnolo, Fabio, 2007.
"Contemporaneous threshold autoregressive models: Estimation, testing and forecasting,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 517-547, December.
- Michael Dueker & Martin Sola & Fabio Spagnolo, 2006. "Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting," Department of Economics Working Papers 2006-04, Universidad Torcuato Di Tella.
- Michael Dueker & Martin Sola & Fabio Spagnolo, 2007. "Contemporaneous Threshold Autoregressive Models: Estimation, Testing and Forecasting," Discussion Papers 5_2007, D.E.S. (Department of Economic Studies), University of Naples "Parthenope", Italy.
- Michael J. Dueker & Martin Sola & Fabio Spagnolo, 2006. "Contemporaneous threshold autoregressive models: estimation, testing and forecasting," Working Papers 2003-024, Federal Reserve Bank of St. Louis.
- Birgit Strikholm & Timo Teräsvirta, 2006. "A sequential procedure for determining the number of regimes in a threshold autoregressive model," Econometrics Journal, Royal Economic Society, vol. 9(3), pages 472-491, November.
- Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.
- Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
- Henning Fischer & Ángela Blanco‐FERNÁndez & Peter Winker, 2016. "Predicting Stock Return Volatility: Can We Benefit from Regression Models for Return Intervals?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(2), pages 113-146, March.
- Kirstin Hubrich & Timo Teräsvirta, 2013. "Thresholds and Smooth Transitions in Vector Autoregressive Models," CREATES Research Papers 2013-18, Department of Economics and Business Economics, Aarhus University.
- Clements, Michael P. & Galvao, Ana Beatriz, 2004. "A comparison of tests of nonlinear cointegration with application to the predictability of US interest rates using the term structure," International Journal of Forecasting, Elsevier, vol. 20(2), pages 219-236.
- Wang, Rudan & Morley, Bruce & Stamatogiannis, Michalis P., 2019. "Forecasting the exchange rate using nonlinear Taylor rule based models," International Journal of Forecasting, Elsevier, vol. 35(2), pages 429-442.
- Martinez Oscar & Olmo Jose, 2012.
"A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences,"
Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 16(3), pages 1-39, September.
- Martínez Ibáñez, Oscar & Olmo, José, 2008. "A nonlinear threshold model for the dependence of extremes of stationary sequences," Working Papers 2072/5361, Universitat Rovira i Virgili, Department of Economics.
- Martinez, O. & Olmo, J., 2008. "A Nonlinear Threshold Model for the Dependence of Extremes of Stationary Sequences," Working Papers 08/08, Department of Economics, City University London.
- Dijk, Dick van & Franses, Philip Hans, 1999.
"Modeling Multiple Regimes in the Business Cycle,"
Macroeconomic Dynamics, Cambridge University Press, vol. 3(3), pages 311-340, September.
- van Dijk, D.J.C. & Franses, Ph.H.B.F., 1997. "Modelling Multiple Regimes in the Business Cycle," Econometric Institute Research Papers EI 9734/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Rapach, David E. & Wohar, Mark E., 2006. "The out-of-sample forecasting performance of nonlinear models of real exchange rate behavior," International Journal of Forecasting, Elsevier, vol. 22(2), pages 341-361.
- McAleer, Michael & Medeiros, Marcelo C., 2008.
"A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries,"
Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
- Michael McAller & Marcelo C. Medeiros, 2007. "A multiple regime smooth transition heterogeneous autoregressive model for long memory and asymmetries," Textos para discussão 544, Department of Economics PUC-Rio (Brazil).
- Lof, Matthijs, 2012. "Heterogeneity in stock prices: A STAR model with multivariate transition function," Journal of Economic Dynamics and Control, Elsevier, vol. 36(12), pages 1845-1854.
More about this item
Keywords
Interval-valued data; Time series; Nonlinearities ; Threshold models; Combined forecasts; S&P500 index; 62F10; 62P20;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:advdac:v:9:y:2015:i:1:p:41-57. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.