IDEAS home Printed from https://ideas.repec.org/p/zbw/sfb649/sfb649dp2008-035.html
   My bibliography  Save this paper

Stock picking via nonsymmetrically pruned binary decision trees

Author

Listed:
  • Andriyashin, Anton

Abstract

Stock picking is the field of financial analysis that is of particular interest for many professional investors and researchers. In this study stock picking is implemented via binary classification trees. Optimal tree size is believed to be the crucial factor in forecasting performance of the trees. While there exists a standard method of tree pruning, which is based on the cost-complexity tradeoff and used in the majority of studies employing binary decision trees, this paper introduces a novel methodology of nonsymmetric tree pruning called Best Node Strategy (BNS). An important property of BNS is proven that provides an easy way to implement the search of the optimal tree size in practice. BNS is compared with the traditional pruning approach by composing two recursive portfolios out of XETRA DAX stocks. Performance forecasts for each of the stocks are provided by constructed decision trees. It is shown that BNS clearly outperforms the traditional approach according to the backtesting results and the Diebold-Mariano test for statistical significance of the performance difference between two forecasting methods.

Suggested Citation

  • Andriyashin, Anton, 2008. "Stock picking via nonsymmetrically pruned binary decision trees," SFB 649 Discussion Papers 2008-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
  • Handle: RePEc:zbw:sfb649:sfb649dp2008-035
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/25277/1/571733174.PDF
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fama, Eugene F & French, Kenneth R, 1988. "Permanent and Temporary Components of Stock Prices," Journal of Political Economy, University of Chicago Press, vol. 96(2), pages 246-273, April.
    2. Campbell, John Y & Hamao, Yasushi, 1992. "Predictable Stock Returns in the United States and Japan: A Study of Long-Term Capital Market Integration," Journal of Finance, American Finance Association, vol. 47(1), pages 43-69, March.
    3. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    4. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    5. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    6. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    7. Neftci, Salih N, 1991. "Naive Trading Rules in Financial Markets and Wiener-Kolmogorov Prediction Theory: A Study of "Technical Analysis."," The Journal of Business, University of Chicago Press, vol. 64(4), pages 549-571, October.
    8. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    9. Fama, Eugene F & French, Kenneth R, 1992. "The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    10. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    11. Kim H. & Loh W.Y., 2001. "Classification Trees With Unbiased Multiway Splits," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 589-604, June.
    12. Chen, Nai-Fu, 1991. "Financial Investment Opportunities and the Macroeconomy," Journal of Finance, American Finance Association, vol. 46(2), pages 529-554, June.
    13. Hartzmark, Michael L, 1991. "Luck versus Forecast Ability: Determinants of Trader Performance in Futures Markets," The Journal of Business, University of Chicago Press, vol. 64(1), pages 49-74, January.
    14. Balvers, Ronald J & Cosimano, Thomas F & McDonald, Bill, 1990. "Predicting Stock Returns in an Efficient Market," Journal of Finance, American Finance Association, vol. 45(4), pages 1109-1128, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hum:wpaper:sfb649dp2008-035 is not listed on IDEAS
    2. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    3. John Ammer & Jianping Mei, 1995. "Strategic returns to international diversification: An application to the equity markets of Europe, Japan and North America," European Financial Management, European Financial Management Association, vol. 1(1), pages 49-59, March.
    4. Lo, Andrew W & Wang, Jiang, 1995. "Implementing Option Pricing Models When Asset Returns Are Predictable," Journal of Finance, American Finance Association, vol. 50(1), pages 87-129, March.
    5. Fernando Rubio, 2005. "Estrategias Cuantitativas De Valor Y Retornos Por Accion De Largo," Finance 0503029, University Library of Munich, Germany.
    6. Philip Gray, 2008. "Economic significance of predictability in Australian equities," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 48(5), pages 783-805, December.
    7. Clare, A. D. & Smith, P. N. & Thomas, S. H., 1997. "UK stock returns and robust tests of mean variance efficiency," Journal of Banking & Finance, Elsevier, vol. 21(5), pages 641-660, May.
    8. Kothari, S. P., 2001. "Capital markets research in accounting," Journal of Accounting and Economics, Elsevier, vol. 31(1-3), pages 105-231, September.
    9. Campbell, John Y, 1996. "Understanding Risk and Return," Journal of Political Economy, University of Chicago Press, vol. 104(2), pages 298-345, April.
    10. Hardouvelis, Gikas A. & Kim, Dongcheol & Wizman, Thierry A., 1996. "Asset pricing models with and without consumption data: An empirical evaluation," Journal of Empirical Finance, Elsevier, vol. 3(3), pages 267-301, September.
    11. Committee, Nobel Prize, 2013. "Understanding Asset Prices," Nobel Prize in Economics documents 2013-1, Nobel Prize Committee.
    12. David Rey, 2005. "Market Timing And Model Uncertainty: An Exploratory Study For The Swiss Stock Market," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 19(3), pages 239-260, October.
    13. Sadorsky, Perry, 2002. "Time-varying risk premiums in petroleum futures prices," Energy Economics, Elsevier, vol. 24(6), pages 539-556, November.
    14. David McMillan & Mark Wohar, 2011. "Sum of the parts stock return forecasting: international evidence," Applied Financial Economics, Taylor & Francis Journals, vol. 21(12), pages 837-845.
    15. Xia, Yihong, 2000. "Learning About Predictability: The Effects of Parameter Uncertainty on Dynamic Asset Allocation," University of California at Los Angeles, Anderson Graduate School of Management qt3167f8mz, Anderson Graduate School of Management, UCLA.
    16. Leland E. Farmer & Lawrence Schmidt & Allan Timmermann, 2023. "Pockets of Predictability," Journal of Finance, American Finance Association, vol. 78(3), pages 1279-1341, June.
    17. Peixin (Payton) Liu & Kuan Xu & Yonggan Zhao, 2011. "Market regimes, sectorial investments, and time‐varying risk premiums," International Journal of Managerial Finance, Emerald Group Publishing Limited, vol. 7(2), pages 107-133, April.
    18. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    19. John Powell & Jing Shi & Tom Smith & Robert Whaley, 2009. "Common Divisors, Payout Persistence, and Return Predictability," International Review of Finance, International Review of Finance Ltd., vol. 9(4), pages 335-357, December.
    20. Nasseh, Alireza & Strauss, Jack, 2000. "Stock prices and domestic and international macroeconomic activity: a cointegration approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 40(2), pages 229-245.
    21. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.

    More about this item

    Keywords

    Decision tree; stock picking; pruning; earnings forecasting; data mining;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C44 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Operations Research; Statistical Decision Theory
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:sfb649:sfb649dp2008-035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/sohubde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.