IDEAS home Printed from https://ideas.repec.org/a/wly/jfutmk/v43y2023i11p1615-1644.html
   My bibliography  Save this article

Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach

Author

Listed:
  • Sudarshan Kumar
  • Sobhesh Kumar Agarwalla
  • Jayanth R. Varma
  • Vineet Virmani

Abstract

While there is a large literature on modeling volatility smile in options markets, most such studies are eventually focused on the forecasting performance of the model parameters and not on the applicability of the models in a trading environment. Drawing on the analogy of volatility smile like a term structure in the context of interest rates in fixed‐income markets, we evaluate the performance of the Dynamic Nelson–Siegel (DNS) approach to modeling the dynamics of volatility smile in a trading environment against competing alternatives. Using model‐based mispricing as our sorting criterion, and deploying a trading strategy of going long the options in the upper deciles and going short the options in the lower deciles, we show that dynamic models consistently outperform their static counterparts, with the worst dynamic model outperforming the best static model in terms of the percentage of mean returns from the trading portfolios and the Sharpe ratio. Specifically, we find that the DNS model consistently outperforms all other competing specifications on most of our selected criteria.

Suggested Citation

  • Sudarshan Kumar & Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2023. "Harvesting the volatility smile in a large emerging market: A Dynamic Nelson–Siegel approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(11), pages 1615-1644, November.
  • Handle: RePEc:wly:jfutmk:v:43:y:2023:i:11:p:1615-1644
    DOI: 10.1002/fut.22450
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/fut.22450
    Download Restriction: no

    File URL: https://libkey.io/10.1002/fut.22450?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Sonali Jain & Jayanth R. Varma & Sobhesh Kumar Agarwalla, 2019. "Indian equity options: Smile, risk premiums, and efficiency," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(2), pages 150-163, February.
    2. Baeho Kim & Da‐Hea Kim & Haehean Park, 2020. "Informed options trading on the implied volatility surface: A cross‐sectional approach," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(5), pages 776-803, May.
    3. Leippold, Markus & Wang, Qian & Zhou, Wenyu, 2022. "Machine learning in the Chinese stock market," Journal of Financial Economics, Elsevier, vol. 145(2), pages 64-82.
    4. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
    5. repec:eme:mfppss:v:39:y:2013:i:6:p:550-568 is not listed on IDEAS
    6. Georgios Chalamandaris & Andrianos E. Tsekrekos, 2014. "Predictability in implied volatility surfaces: evidence from the Euro OTC FX market," The European Journal of Finance, Taylor & Francis Journals, vol. 20(1), pages 33-58, January.
    7. Xi Dong & Yan Li & David E. Rapach & Guofu Zhou, 2022. "Anomalies and the Expected Market Return," Journal of Finance, American Finance Association, vol. 77(1), pages 639-681, February.
    8. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    9. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    10. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    11. Guidolin, Massimo & Timmermann, Allan, 2003. "Option prices under Bayesian learning: implied volatility dynamics and predictive densities," Journal of Economic Dynamics and Control, Elsevier, vol. 27(5), pages 717-769, March.
    12. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    13. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    14. Jay Cao & Jacky Chen & John Hull, 2020. "A neural network approach to understanding implied volatility movements," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1405-1413, September.
    15. Pastor, Lubos & Stambaugh, Robert F., 2003. "Liquidity Risk and Expected Stock Returns," Journal of Political Economy, University of Chicago Press, vol. 111(3), pages 642-685, June.
    16. Grace Xing Hu & Jun Pan & Jiang Wang, 2013. "Noise as Information for Illiquidity," Journal of Finance, American Finance Association, vol. 68(6), pages 2341-2382, December.
    17. Biao Guo & Qian Han & Bin Zhao, 2014. "The Nelson–Siegel Model of the Term Structure of Option Implied Volatility and Volatility Components," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 34(8), pages 788-806, August.
    18. repec:bla:jfinan:v:59:y:2004:i:2:p:711-753 is not listed on IDEAS
    19. Cong Sui & Peter Lung & Mo Yang, 2020. "Predictable Dynamics in the Implied Volatility Surface Based on Weighted Least Squares: Evidence from Soybean Meal Futures Options in China," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 56(11), pages 2625-2638, September.
    20. Nagy, Krisztina, 2020. "Term structure estimation with missing data: Application for emerging markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 347-360.
    21. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
    22. Levich, Richard M. & Thomas, Lee III, 1993. "The significance of technical trading-rule profits in the foreign exchange market: a bootstrap approach," Journal of International Money and Finance, Elsevier, vol. 12(5), pages 451-474, October.
    23. Chen, Ying & Han, Qian & Niu, Linlin, 2018. "Forecasting the term structure of option implied volatility: The power of an adaptive method," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 157-177.
    24. Franke, Gunter & Stapleton, Richard C. & Subrahmanyam, Marti G., 1998. "Who Buys and Who Sells Options: The Role of Options in an Economy with Background Risk," Journal of Economic Theory, Elsevier, vol. 82(1), pages 89-109, September.
    25. García, Diego & Hu, Xiaowen & Rohrer, Maximilian, 2023. "The colour of finance words," Journal of Financial Economics, Elsevier, vol. 147(3), pages 525-549.
    26. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    27. Kar Yan Tam & Melody Y. Kiang, 1992. "Managerial Applications of Neural Networks: The Case of Bank Failure Predictions," Management Science, INFORMS, vol. 38(7), pages 926-947, July.
    28. Niels S. GrØnborg & Asger Lunde, 2016. "Analyzing Oil Futures with a Dynamic Nelson‐Siegel Model," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(2), pages 153-173, February.
    29. Le, Van & Zurbruegg, Ralf, 2014. "Forecasting option smile dynamics," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 32-45.
    30. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2011. "How important is the term structure in implied volatility surface modeling? Evidence from foreign exchange options," Journal of International Money and Finance, Elsevier, vol. 30(4), pages 623-640, June.
    31. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    32. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
    33. Anatolyev, Stanislav & Gerko, Alexander, 2005. "A Trading Approach to Testing for Predictability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 455-461, October.
    34. Nelson, Charles R & Siegel, Andrew F, 1987. "Parsimonious Modeling of Yield Curves," The Journal of Business, University of Chicago Press, vol. 60(4), pages 473-489, October.
    35. Liu, Dehong & Liang, Yucong & Zhang, Lili & Lung, Peter & Ullah, Rizwan, 2021. "Implied volatility forecast and option trading strategy," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 943-954.
    36. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    37. Srivastava, Mrinalini & Rao, Amar & Parihar, Jaya Singh & Chavriya, Shubham & Singh, Surendar, 2023. "What do the AI methods tell us about predicting price volatility of key natural resources: Evidence from hyperparameter tuning," Resources Policy, Elsevier, vol. 80(C).
    38. Chen, Ying & Niu, Linlin, 2014. "Adaptive dynamic Nelson–Siegel term structure model with applications," Journal of Econometrics, Elsevier, vol. 180(1), pages 98-115.
    39. Agarwalla, Sobhesh Kumar & Varma, Jayanth R. & Virmani, Vineet, 2021. "The impact of COVID-19 on tail risk: Evidence from Nifty index options," Economics Letters, Elsevier, vol. 204(C).
    40. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    41. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    42. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    43. S. G. Kou & Hui Wang, 2004. "Option Pricing Under a Double Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 50(9), pages 1178-1192, September.
    44. Mixon, Scott, 2009. "Option markets and implied volatility: Past versus present," Journal of Financial Economics, Elsevier, vol. 94(2), pages 171-191, November.
    45. Shleifer, Andrei & Vishny, Robert W, 1997. "The Limits of Arbitrage," Journal of Finance, American Finance Association, vol. 52(1), pages 35-55, March.
    46. Biao Guo & Qian Han & Hai Lin, 2018. "Are there gains from using information over the surface of implied volatilities?," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(6), pages 645-672, June.
    47. Taylor, Stephen J. & Yadav, Pradeep K. & Zhang, Yuanyuan, 2010. "The information content of implied volatilities and model-free volatility expectations: Evidence from options written on individual stocks," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 871-881, April.
    48. Vineet Virmani, 2012. "On estimability of parsimonious term structure models: an experiment with the Nelson–Siegel specification," Applied Economics Letters, Taylor & Francis Journals, vol. 19(17), pages 1703-1706.
    49. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    50. Sol Kim, 2021. "Portfolio of Volatility Smiles versus Volatility Surface: Implications for pricing and hedging options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(7), pages 1154-1176, July.
    51. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    52. Jin Zhang & Yi Xiang, 2008. "The implied volatility smirk," Quantitative Finance, Taylor & Francis Journals, vol. 8(3), pages 263-284.
    53. Reiswich, Dimitri & Wystup, Uwe, 2009. "FX volatility smile construction," CPQF Working Paper Series 20, Frankfurt School of Finance and Management, Centre for Practical Quantitative Finance (CPQF).
    54. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    55. Sudarshan Kumar & Vineet Virmani, 2022. "Term structure estimation with liquidity-adjusted Affine Nelson Siegel model: A nonlinear state space approach applied to the Indian bond market," Applied Economics, Taylor & Francis Journals, vol. 54(6), pages 648-669, February.
    56. L. Rogers & M. Tehranchi, 2010. "Can the implied volatility surface move by parallel shifts?," Finance and Stochastics, Springer, vol. 14(2), pages 235-248, April.
    57. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    58. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    59. Nikita Medvedev & Zhiguang Wang, 2022. "Multistep forecast of the implied volatility surface using deep learning," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(4), pages 645-667, April.
    60. Rubinstein, Mark, 1994. "Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
    61. Yue, Tian & Gehricke, Sebastian A. & Zhang, Jin E. & Pan, Zheyao, 2021. "The implied volatility smirk in the Chinese equity options market," Pacific-Basin Finance Journal, Elsevier, vol. 69(C).
    62. Wen Jin & Joshua Livnat & Yuan Zhang, 2012. "Option Prices Leading Equity Prices: Do Option Traders Have an Information Advantage?," Journal of Accounting Research, Wiley Blackwell, vol. 50(2), pages 401-432, May.
    63. Sobhesh Kumar Agarwalla & Jayanth R. Varma & Vineet Virmani, 2021. "Rational repricing of risk during COVID‐19: Evidence from Indian single stock options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(10), pages 1498-1519, October.
    64. Obaid, Khaled & Pukthuanthong, Kuntara, 2022. "A picture is worth a thousand words: Measuring investor sentiment by combining machine learning and photos from news," Journal of Financial Economics, Elsevier, vol. 144(1), pages 273-297.
    65. Bedendo, Mascia & Hodges, Stewart D., 2009. "The dynamics of the volatility skew: A Kalman filter approach," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1156-1165, June.
    66. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    67. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    68. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Mondher Bellalah, 2009. "Derivatives, Risk Management & Value," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7175, December.
    3. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    4. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    5. Sobhesh Kumar Agarwalla & Sumit Saurav & Jayanth R. Varma, 2022. "Lottery and bubble stocks and the cross‐section of option‐implied tail risks," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 42(2), pages 231-249, February.
    6. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    7. Chen, Ying & Han, Qian & Niu, Linlin, 2018. "Forecasting the term structure of option implied volatility: The power of an adaptive method," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 157-177.
    8. Feng Zhao & Robert Jarrow & Haitao Li, 2004. "Interest Rate Caps Smile Too! But Can the LIBOR Market Models Capture It?," Econometric Society 2004 North American Winter Meetings 431, Econometric Society.
    9. F. Leung & M. Law & S. K. Djeng, 2024. "Deterministic modelling of implied volatility in cryptocurrency options with underlying multiple resolution momentum indicator and non-linear machine learning regression algorithm," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-25, December.
    10. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, May.
    11. Jondeau, E. & Rockinger, M., 1998. "Reading the Smile: The Message Conveyed by Methods Which Infer Risk Neutral," Working papers 47, Banque de France.
    12. Cheng Few Lee & Yibing Chen & John Lee, 2020. "Alternative Methods to Derive Option Pricing Models: Review and Comparison," World Scientific Book Chapters, in: Cheng Few Lee & John C Lee (ed.), HANDBOOK OF FINANCIAL ECONOMETRICS, MATHEMATICS, STATISTICS, AND MACHINE LEARNING, chapter 102, pages 3573-3617, World Scientific Publishing Co. Pte. Ltd..
    13. Toby Daglish & John Hull & Wulin Suo, 2007. "Volatility surfaces: theory, rules of thumb, and empirical evidence," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 507-524.
    14. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    15. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    16. Carey, Alexander, 2006. "Path-conditional forward volatility," MPRA Paper 4964, University Library of Munich, Germany.
    17. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    18. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, June.
    19. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.
    20. Falko Baustian & Martin Fencl & Jan Posp'iv{s}il & Vladim'ir v{S}v'igler, 2021. "A note on a PDE approach to option pricing under xVA," Papers 2105.00051, arXiv.org, revised Jul 2021.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jfutmk:v:43:y:2023:i:11:p:1615-1644. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/0270-7314/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.