IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00960875.html
   My bibliography  Save this paper

Do Google Trend data contain more predictability than price returns?

Author

Listed:
  • Damien Challet

    (MAS - Mathématiques Appliquées aux Systèmes - EA 4037 - Ecole Centrale Paris)

  • Ahmed Bel Hadj Ayed

Abstract

Using non-linear machine learning methods and a proper backtest procedure, we critically examine the claim that Google Trends can predict future price returns. We first review the many potential biases that may influence backtests with this kind of data positively, the choice of keywords being by far the greatest culprit. We then argue that the real question is whether such data contain more predictability than price returns themselves: our backtest yields a performance of about 17bps per week which only weakly depends on the kind of data on which predictors are based, i.e. either past price returns or Google Trends data, or both.

Suggested Citation

  • Damien Challet & Ahmed Bel Hadj Ayed, 2015. "Do Google Trend data contain more predictability than price returns?," Post-Print hal-00960875, HAL.
  • Handle: RePEc:hal:journl:hal-00960875
    DOI: 10.21314/JOIS.2015.064
    Note: View the original document on HAL open archive server: https://hal.science/hal-00960875
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00960875/document
    Download Restriction: no

    File URL: https://libkey.io/10.21314/JOIS.2015.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    2. Huina Mao & Scott Counts & Johan Bollen, 2011. "Predicting Financial Markets: Comparing Survey, News, Twitter and Search Engine Data," Papers 1112.1051, arXiv.org.
    3. Ilaria Bordino & Stefano Battiston & Guido Caldarelli & Matthieu Cristelli & Antti Ukkonen & Ingmar Weber, 2012. "Web Search Queries Can Predict Stock Market Volumes," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-17, July.
    4. Castle, Jennifer L. & Fawcett, Nicholas W.P. & Hendry, David F., 2009. "Nowcasting is not Just Contemporaneous Forecasting," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210, pages 71-89, October.
    5. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    6. Ladislav Kristoufek, 2013. "Can Google Trends search queries contribute to risk diversification?," Papers 1310.1444, arXiv.org.
    7. Rechenthin, Michael & Street, W. Nick & Srinivasan, Padmini, 2013. "Stock chatter: Using stock sentiment to predict price direction," Algorithmic Finance, IOS Press, vol. 2(3-4), pages 169-196.
    8. Castle, Jennifer L. & Fawcett, Nicholas W.P. & Hendry, David F., 2009. "Nowcasting is not Just Contemporaneous Forecasting," National Institute Economic Review, National Institute of Economic and Social Research, vol. 210, pages 71-89, October.
    9. repec:bla:jfinan:v:59:y:2004:i:3:p:1259-1294 is not listed on IDEAS
    10. Takeda, Fumiko & Wakao, Takumi, 2014. "Google search intensity and its relationship with returns and trading volume of Japanese stocks," Pacific-Basin Finance Journal, Elsevier, vol. 27(C), pages 1-18.
    11. Dietmar Janetzko, 2014. "Using Twitter to Model the EUR/USD Exchange Rate," Papers 1402.1624, arXiv.org.
    12. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duarte Queirós, Sílvio M., 2016. "Trading volume in financial markets: An introductory review," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 24-37.
    2. Jacques Bughin, 2015. "Google searches and twitter mood: nowcasting telecom sales performance," Netnomics, Springer, vol. 16(1), pages 87-105, August.
    3. Chong, Terence Tai Leung & Li, Chen, 2020. "Search of Attention in Financial Market," MPRA Paper 99003, University Library of Munich, Germany.
    4. Dimitrios Vezeris & Themistoklis Kyrgos & Christos Schinas, 2018. "Take Profit and Stop Loss Trading Strategies Comparison in Combination with an MACD Trading System," JRFM, MDPI, vol. 11(3), pages 1-23, September.
    5. Kim, Neri & Lučivjanská, Katarína & Molnár, Peter & Villa, Roviel, 2019. "Google searches and stock market activity: Evidence from Norway," Finance Research Letters, Elsevier, vol. 28(C), pages 208-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2014. "Coupling news sentiment with web browsing data improves prediction of intra-day price dynamics," Papers 1412.3948, arXiv.org, revised Dec 2015.
    2. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    3. Chauvet, Marcelle & Gabriel, Stuart & Lutz, Chandler, 2016. "Mortgage default risk: New evidence from internet search queries," Journal of Urban Economics, Elsevier, vol. 96(C), pages 91-111.
    4. Boone, Tonya & Ganeshan, Ram & Jain, Aditya & Sanders, Nada R., 2019. "Forecasting sales in the supply chain: Consumer analytics in the big data era," International Journal of Forecasting, Elsevier, vol. 35(1), pages 170-180.
    5. Zhen-Hua Yang & Jian-Guo Liu & Chang-Rui Yu & Jing-Ti Han, 2017. "Quantifying the effect of investors’ attention on stock market," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-16, May.
    6. Halousková, Martina & Stašek, Daniel & Horváth, Matúš, 2022. "The role of investor attention in global asset price variation during the invasion of Ukraine," Finance Research Letters, Elsevier, vol. 50(C).
    7. Livio Fenga, 2020. "Filtering and prediction of noisy and unstable signals: The case of Google Trends data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 281-295, March.
    8. Gabriele Ranco & Ilaria Bordino & Giacomo Bormetti & Guido Caldarelli & Fabrizio Lillo & Michele Treccani, 2016. "Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics," PLOS ONE, Public Library of Science, vol. 11(1), pages 1-14, January.
    9. Audrino, Francesco & Sigrist, Fabio & Ballinari, Daniele, 2020. "The impact of sentiment and attention measures on stock market volatility," International Journal of Forecasting, Elsevier, vol. 36(2), pages 334-357.
    10. Mioara, POPESCU, 2015. "Construction Of Economic Indicators Using Internet Searches," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 6(1), pages 25-31.
    11. David F. Hendry, 2011. "Empirical Economic Model Discovery and Theory Evaluation," Rationality, Markets and Morals, Frankfurt School Verlag, Frankfurt School of Finance & Management, vol. 2(46), October.
    12. Hervé, Fabrice & Zouaoui, Mohamed & Belvaux, Bertrand, 2019. "Noise traders and smart money: Evidence from online searches," Economic Modelling, Elsevier, vol. 83(C), pages 141-149.
    13. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    14. Ronald MacDonald & Xuxin Mao, 2015. "An Alternative way of Predicting the Outcome of the Scottish Independence Referendum: The Information in the Ether," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-69, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    15. Kao, Lanfeng & Chen, Anlin & Lu, Cheng-Shou, 2022. "Retail investor attention and IPO prices with a pre-IPO market," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 416-432.
    16. Psaradellis, Ioannis & Laws, Jason & Pantelous, Athanasios A. & Sermpinis, Georgios, 2023. "Technical analysis, spread trading, and data snooping control," International Journal of Forecasting, Elsevier, vol. 39(1), pages 178-191.
    17. Fondeur, Y. & Karamé, F., 2013. "Can Google data help predict French youth unemployment?," Economic Modelling, Elsevier, vol. 30(C), pages 117-125.
    18. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    19. Abay,Kibrom A. & Hirfrfot,Kibrom Tafere & Woldemichael,Andinet, 2020. "Winners and Losers from COVID-19 : Global Evidence from Google Search," Policy Research Working Paper Series 9268, The World Bank.
    20. Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00960875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.