IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v227y2022i2p429-460.html
   My bibliography  Save this article

Residual-augmented IVX predictive regression

Author

Listed:
  • Demetrescu, Matei
  • Rodrigues, Paulo M.M.

Abstract

Bias correction in predictive regressions is known to reduce the empirical size problems of OLS-based predictability tests with persistent predictors. This paper shows that bias correction is also achieved in the context of the extended instrumental variable (IVX) predictability testing framework introduced by Kostakis et al. (2015). To be specific, new IVX-based statistics subject to a bias correction analogous to that proposed by Amihud and Hurvich (2004) are introduced. Four important contributions are provided: first, we characterize the effects that bias-reduction adjustments have on the asymptotic distributions of the IVX test statistics in a general context allowing for short-run dynamics and heterogeneity; second, we discuss the validity of the procedure when predictors are stationary as well as near-integrated; third, we conduct an exhaustive Monte Carlo analysis to investigate the small in- and out-of-sample properties of the test procedures and their sensitivity to distinctive features that characterize predictive regressions in practice, such as strong persistence, endogeneity, and non-Gaussian innovations; and fourth, we provide an analysis of real estate return and rent growth predictability in 19 OECD countries.

Suggested Citation

  • Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
  • Handle: RePEc:eee:econom:v:227:y:2022:i:2:p:429-460
    DOI: 10.1016/j.jeconom.2020.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440762030395X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Cai, Zongwu & Wang, Yunfei, 2014. "Testing predictive regression models with nonstationary regressors," Journal of Econometrics, Elsevier, vol. 178(P1), pages 4-14.
    3. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 813-841, December.
    4. So, Beong Soo & Shin, Dong Wan, 1999. "Recursive mean adjustment in time-series inferences," Statistics & Probability Letters, Elsevier, vol. 43(1), pages 65-73, May.
    5. Cavaliere, Giuseppe & Rahbek, Anders & Taylor, A.M. Robert, 2010. "Testing for co-integration in vector autoregressions with non-stationary volatility," Journal of Econometrics, Elsevier, vol. 158(1), pages 7-24, September.
    6. Amado, Cristina & Teräsvirta, Timo, 2014. "Modelling changes in the unconditional variance of long stock return series," Journal of Empirical Finance, Elsevier, vol. 25(C), pages 15-35.
    7. Im, Kyung So & Schmidt, Peter, 2008. "More efficient estimation under non-normality when higher moments do not depend on the regressors, using residual augmented least squares," Journal of Econometrics, Elsevier, vol. 144(1), pages 219-233, May.
    8. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037.
    9. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    10. Magdalinos, Tassos & Phillips, Peter C.B., 2009. "Limit Theory For Cointegrated Systems With Moderately Integrated And Moderately Explosive Regressors," Econometric Theory, Cambridge University Press, vol. 25(2), pages 482-526, April.
    11. Maynard, Alex & Shimotsu, Katsumi, 2009. "Covariance-Based Orthogonality Tests For Regressors With Unknown Persistence," Econometric Theory, Cambridge University Press, vol. 25(1), pages 63-116, February.
    12. Dong Wan Shin & Beong Soo So, 2001. "recursive Mean Adjustment for Unit Root Tests," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(5), pages 595-612, September.
    13. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    14. Kishor, N. Kundan & Morley, James, 2015. "What factors drive the price–rent ratio for the housing market? A modified present-value analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 58(C), pages 235-249.
    15. Ghysels, Eric & Plazzi, Alberto & Valkanov, Rossen & Torous, Walter, 2013. "Forecasting Real Estate Prices," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 509-580, Elsevier.
    16. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(1), pages 1-21, February.
    17. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
    18. Hansen, Bruce E., 1992. "Convergence to Stochastic Integrals for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 8(4), pages 489-500, December.
    19. Demetrescu, Matei, 2014. "Enhancing the local power of IVX-based tests in predictive regressions," Economics Letters, Elsevier, vol. 124(2), pages 269-273.
    20. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    21. Peter C. B. Phillips, 2015. "Pitfalls and Possibilities in Predictive Regression," Cowles Foundation Discussion Papers 2003, Cowles Foundation for Research in Economics, Yale University.
    22. Amado, Cristina & Teräsvirta, Timo, 2013. "Modelling volatility by variance decomposition," Journal of Econometrics, Elsevier, vol. 175(2), pages 142-153.
    23. Elliott, Graham & Stock, James H., 1994. "Inference in Time Series Regression When the Order of Integration of a Regressor is Unknown," Econometric Theory, Cambridge University Press, vol. 10(3-4), pages 672-700, August.
    24. Massimo Guidolin & Allan Timmermann, 2006. "An econometric model of nonlinear dynamics in the joint distribution of stock and bond returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 1-22, January.
    25. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    26. Giuseppe Cavaliere, 2005. "Unit Root Tests under Time-Varying Variances," Econometric Reviews, Taylor & Francis Journals, vol. 23(3), pages 259-292.
    27. Gregory Mankiw, N. & Shapiro, Matthew D., 1986. "Do we reject too often? : Small sample properties of tests of rational expectations models," Economics Letters, Elsevier, vol. 20(2), pages 139-145.
    28. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    29. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    30. Lewellen, Jonathan, 2004. "Predicting returns with financial ratios," Journal of Financial Economics, Elsevier, vol. 74(2), pages 209-235, November.
    31. Iliyan Georgiev & David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2019. "A Bootstrap Stationarity Test for Predictive Regression Invalidity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 528-541, July.
    32. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    33. John Y. Campbell, 2007. "Estimating the Equity Premium," NBER Working Papers 13423, National Bureau of Economic Research, Inc.
    34. Bossaerts, Peter & Hillion, Pierre, 1999. "Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn?," The Review of Financial Studies, Society for Financial Studies, vol. 12(2), pages 405-428.
    35. Busetti, Fabio & Taylor, A. M. Robert, 2004. "Tests of stationarity against a change in persistence," Journal of Econometrics, Elsevier, vol. 123(1), pages 33-66, November.
    36. Yakov Amihud & Clifford M. Hurvich & Yi Wang, 2009. "Multiple-Predictor Regressions: Hypothesis Testing," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 413-434, January.
    37. repec:taf:jnlbes:v:30:y:2012:i:2:p:229-241 is not listed on IDEAS
    38. Hansen, Bruce E., 2010. "Averaging estimators for autoregressions with a near unit root," Journal of Econometrics, Elsevier, vol. 158(1), pages 142-155, September.
    39. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    40. Yoosoon Chang & Joon Park, 2002. "On The Asymptotics Of Adf Tests For Unit Roots," Econometric Reviews, Taylor & Francis Journals, vol. 21(4), pages 431-447.
    41. Peter C. B. Phillips & Ke‐Li Xu, 2006. "Inference in Autoregression under Heteroskedasticity," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(2), pages 289-308, March.
    42. Engsted, Tom & Pedersen, Thomas Q., 2015. "Predicting returns and rent growth in the housing market using the rent-price ratio: Evidence from the OECD countries," Journal of International Money and Finance, Elsevier, vol. 53(C), pages 257-275.
    43. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    44. Amihud, Yakov & Hurvich, Clifford M. & Wang, Yi, 2010. "Predictive regression with order-p autoregressive predictors," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 513-525, June.
    45. Joakim Westerlund & Hande Karabiyik & Paresh Narayan, 2017. "Testing for Predictability in panels with General Predictors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(3), pages 554-574, April.
    46. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    47. Unknown, 1986. "Letters," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 1(4), pages 1-9.
    48. Teräsvirta, Timo & Zhao, Zhenfang, 2007. "Stylized Facts of Return Series, Robust Estimates, and Three Popular Models of Volatility," SSE/EFI Working Paper Series in Economics and Finance 662, Stockholm School of Economics, revised 01 Aug 2007.
    49. Breitung, Jörg & Demetrescu, Matei, 2015. "Instrumental variable and variable addition based inference in predictive regressions," Journal of Econometrics, Elsevier, vol. 187(1), pages 358-375.
    50. Avramov, Doron & Barras, Laurent & Kosowski, Robert, 2013. "Hedge Fund Return Predictability Under the Magnifying Glass," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(4), pages 1057-1083, August.
    51. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    52. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2006. "Modified tests for a change in persistence," Journal of Econometrics, Elsevier, vol. 134(2), pages 441-469, October.
    53. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    54. Nelson, Charles R & Kim, Myung J, 1993. "Predictable Stock Returns: The Role of Small Sample Bias," Journal of Finance, American Finance Association, vol. 48(2), pages 641-661, June.
    55. Alberto Plazzi & Walter Torous & Rossen Valkanov, 2010. "Expected Returns and Expected Growth in Rents of Commercial Real Estate," The Review of Financial Studies, Society for Financial Studies, vol. 23(9), pages 3469-3519.
    56. Campbell, Sean D. & Davis, Morris A. & Gallin, Joshua & Martin, Robert F., 2009. "What moves housing markets: A variance decomposition of the rent-price ratio," Journal of Urban Economics, Elsevier, vol. 66(2), pages 90-102, September.
    57. Michael Johannes & Arthur Korteweg & Nicholas Polson, 2014. "Sequential Learning, Predictability, and Optimal Portfolio Returns," Journal of Finance, American Finance Association, vol. 69(2), pages 611-644, April.
    58. Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
    59. Camponovo, Lorenzo, 2015. "Differencing Transformations And Inference In Predictive Regression Models," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1331-1358, December.
    60. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    61. Bali, Turan G., 2008. "The intertemporal relation between expected returns and risk," Journal of Financial Economics, Elsevier, vol. 87(1), pages 101-131, January.
    62. Paulo M.M. Rodrigues & Antonio Rubia, 2011. "A Class of Robust Tests in Augmented Predictive Regressions," Working Papers w201126, Banco de Portugal, Economics and Research Department.
    63. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1131-1147, October.
    64. Kim, Jae-Young, 2000. "Detection of change in persistence of a linear time series," Journal of Econometrics, Elsevier, vol. 95(1), pages 97-116, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiaosai Liao & Xinjue Li & Qingliang Fan, 2024. "Robust Inference for Multiple Predictive Regressions with an Application on Bond Risk Premia," Papers 2401.01064, arXiv.org.
    2. Bingduo Yang & Xiaohui Liu & Liang Peng & Zongwu Cai, 2018. "Unified Tests for a Dynamic Predictive Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201808, University of Kansas, Department of Economics, revised Sep 2018.
    3. Yijie Fei & Yiu Lim Lui & Jun Yu, 2024. "Testing Predictability in the Presence of Persistent Errors," Working Papers 202401, University of Macau, Faculty of Business Administration.
    4. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    2. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
    3. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    4. Zongwu Cai & Seong Yeon Chang, 2018. "A New Test In A Predictive Regression with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201811, University of Kansas, Department of Economics, revised Dec 2018.
    5. Paulo M.M. Rodrigues & Antonio Rubia, 2011. "A Class of Robust Tests in Augmented Predictive Regressions," Working Papers w201126, Banco de Portugal, Economics and Research Department.
    6. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Extensions to IVX methods of inference for return predictability," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Bingduo Yang & Xiaohui Liu & Liang Peng & Zongwu Cai, 2018. "Unified Tests for a Dynamic Predictive Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201808, University of Kansas, Department of Economics, revised Sep 2018.
    8. Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2021. "Simple tests for stock return predictability with good size and power properties," Journal of Econometrics, Elsevier, vol. 224(1), pages 198-214.
    9. Lorenzo Camponovo & O. Scaillet & Fabio Trojani, 2013. "Predictability Hidden by Anomalous Observations," Swiss Finance Institute Research Paper Series 13-05, Swiss Finance Institute.
    10. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    11. Yang, Bingduo & Long, Wei & Yang, Zihui, 2022. "Testing predictability of stock returns under possible bubbles," Journal of Empirical Finance, Elsevier, vol. 68(C), pages 246-260.
    12. Wachter, Jessica A. & Warusawitharana, Missaka, 2009. "Predictable returns and asset allocation: Should a skeptical investor time the market?," Journal of Econometrics, Elsevier, vol. 148(2), pages 162-178, February.
    13. Chiquoine, Benjamin & Hjalmarsson, Erik, 2009. "Jackknifing stock return predictions," Journal of Empirical Finance, Elsevier, vol. 16(5), pages 793-803, December.
    14. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    15. Ľuboš Pástor & Robert F. Stambaugh, 2009. "Predictive Systems: Living with Imperfect Predictors," Journal of Finance, American Finance Association, vol. 64(4), pages 1583-1628, August.
    16. Pitarakis, Jean-Yves, 2019. "Predictive Regressions," UC3M Working papers. Economics 28554, Universidad Carlos III de Madrid. Departamento de Economía.
    17. Cai, Zongwu & Chen, Haiqiang & Liao, Xiaosai, 2023. "A new robust inference for predictive quantile regression," Journal of Econometrics, Elsevier, vol. 234(1), pages 227-250.
    18. Zongwu Cai & Haiqiang Chen & Xiaosai Liao, 2020. "A New Robust Inference for Predictive Quantile Regression," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202002, University of Kansas, Department of Economics, revised Feb 2020.
    19. Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
    20. repec:wyi:journl:002108 is not listed on IDEAS
    21. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2017. "International stock return predictability: Evidence from new statistical tests," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 97-113.

    More about this item

    Keywords

    Predictability; Persistence; Persistence change; Bias reduction;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:227:y:2022:i:2:p:429-460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.