IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v282y2019i1d10.1007_s10479-018-2808-0.html
   My bibliography  Save this article

Forecasting government bond spreads with heuristic models: evidence from the Eurozone periphery

Author

Listed:
  • Filipa Fernandes

    (Coventry University)

  • Charalampos Stasinakis

    (University of Glasgow)

  • Zivile Zekaite

    (University of Glasgow)

Abstract

This study investigates the predictability of European long-term government bond spreads through the application of heuristic and metaheuristic support vector regression (SVR) hybrid structures. Genetic, krill herd and sine–cosine algorithms are applied to the parameterization process of the SVR and locally weighted SVR (LSVR) methods. The inputs of the SVR models are selected from a large pool of linear and non-linear individual predictors. The statistical performance of the main models is evaluated against a random walk, an Autoregressive Moving Average, the best individual prediction model and the traditional SVR and LSVR structures. All models are applied to forecast daily and weekly government bond spreads of Greece, Ireland, Italy, Portugal and Spain over the sample period 2000–2017. The results show that the sine–cosine LSVR is outperforming its counterparts in terms of statistical accuracy, while metaheuristic approaches seem to benefit the parameterization process more than the heuristic ones.

Suggested Citation

  • Filipa Fernandes & Charalampos Stasinakis & Zivile Zekaite, 2019. "Forecasting government bond spreads with heuristic models: evidence from the Eurozone periphery," Annals of Operations Research, Springer, vol. 282(1), pages 87-118, November.
  • Handle: RePEc:spr:annopr:v:282:y:2019:i:1:d:10.1007_s10479-018-2808-0
    DOI: 10.1007/s10479-018-2808-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-018-2808-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-018-2808-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. K. S. Chan & H. Tong, 1986. "On Estimating Thresholds In Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 7(3), pages 179-190, May.
    2. Antonakakis, Nikolaos & Vergos, Konstantinos, 2013. "Sovereign bond yield spillovers in the Euro zone during the financial and debt crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 258-272.
    3. Marta Gómez†Puig, 2009. "Systemic and Idiosyncratic Risk in EU†15 Sovereign Yield Spreads after Seven Years of Monetary Union," European Financial Management, European Financial Management Association, vol. 15(5), pages 971-1000, November.
    4. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    5. Li Wang & Ji Zhu, 2010. "Financial market forecasting using a two-step kernel learning method for the support vector regression," Annals of Operations Research, Springer, vol. 174(1), pages 103-120, February.
    6. Krylova, Elizaveta & Darracq Pariès, Matthieu & Moccero, Diego & Marchini, Claudia, 2014. "The retail bank interest rate pass-through: The case of the euro area during the financial and sovereign debt crisis," Occasional Paper Series 155, European Central Bank.
    7. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    8. Abad, Pilar & Chuliá, Helena & Gómez-Puig, Marta, 2010. "EMU and European government bond market integration," Journal of Banking & Finance, Elsevier, vol. 34(12), pages 2851-2860, December.
    9. Shapiro, Arnold F., 2000. "A Hitchhiker's guide to the techniques of adaptive nonlinear models," Insurance: Mathematics and Economics, Elsevier, vol. 26(2-3), pages 119-132, May.
    10. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    11. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    12. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    13. Dewachter, Hans & Iania, Leonardo & Lyrio, Marco & de Sola Perea, Maite, 2015. "A macro-financial analysis of the euro area sovereign bond market," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 308-325.
    14. J. Alcaraz & C. Maroto, 2001. "A Robust Genetic Algorithm for Resource Allocation in Project Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 83-109, February.
    15. Jarque, Carlos M. & Bera, Anil K., 1980. "Efficient tests for normality, homoscedasticity and serial independence of regression residuals," Economics Letters, Elsevier, vol. 6(3), pages 255-259.
    16. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    17. Georgoutsos, Dimitris A. & Migiakis, Petros M., 2013. "Heterogeneity of the determinants of euro-area sovereign bond spreads; what does it tell us about financial stability?," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4650-4664.
    18. Hyunchul Ahn & Kyoung-jae Kim, 2008. "Using genetic algorithms to optimize nearest neighbors for data mining," Annals of Operations Research, Springer, vol. 163(1), pages 5-18, October.
    19. Sermpinis, Georgios & Theofilatos, Konstantinos & Karathanasopoulos, Andreas & Georgopoulos, Efstratios F. & Dunis, Christian, 2013. "Forecasting foreign exchange rates with adaptive neural networks using radial-basis functions and Particle Swarm Optimization," European Journal of Operational Research, Elsevier, vol. 225(3), pages 528-540.
    20. Manfred Gilli & Dietmar Maringer & Peter Winker, 2008. "Applications of Heuristics in Finance," International Handbooks on Information Systems, in: Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), Handbook on Information Technology in Finance, chapter 26, pages 635-653, Springer.
    21. Darrell Duffie & Lasse Heje Pedersen & Kenneth J. Singleton, 2003. "Modeling Sovereign Yield Spreads: A Case Study of Russian Debt," Journal of Finance, American Finance Association, vol. 58(1), pages 119-159, February.
    22. Charalampos Stasinakis & Georgios Sermpinis & Ioannis Psaradellis & Thanos Verousis, 2016. "Krill-Herd Support Vector Regression and heterogeneous autoregressive leverage: evidence from forecasting and trading commodities," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1901-1915, December.
    23. Favero, Carlo A., 2013. "Modelling and forecasting government bond spreads in the euro area: A GVAR model," Journal of Econometrics, Elsevier, vol. 177(2), pages 343-356.
    24. Sermpinis, Georgios & Stasinakis, Charalampos & Theofilatos, Konstantinos & Karathanasopoulos, Andreas, 2015. "Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations," European Journal of Operational Research, Elsevier, vol. 247(3), pages 831-846.
    25. Leschinski, Christian & Bertram, Philip, 2017. "Time varying contagion in EMU government bond spreads," Journal of Financial Stability, Elsevier, vol. 29(C), pages 72-91.
    26. Sermpinis, Georgios & Stasinakis, Charalampos & Hassanniakalager, Arman, 2017. "Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds," European Journal of Operational Research, Elsevier, vol. 263(2), pages 540-558.
    27. Aristei, David & Martelli, Duccio, 2014. "Sovereign bond yield spreads and market sentiment and expectations: Empirical evidence from Euro area countries," Journal of Economics and Business, Elsevier, vol. 76(C), pages 55-84.
    28. Simone Manganelli & Guido Wolswijk, 2009. "What drives spreads in the euro area government bond market? [‘What “hides” behind sovereign debt ratings?’]," Economic Policy, CEPR, CESifo, Sciences Po;CES;MSH, vol. 24(58), pages 191-240.
    29. Paniagua, Jordi & Sapena, Juan & Tamarit, Cecilio, 2017. "Sovereign debt spreads in EMU: The time-varying role of fundamentals and market distrust," Journal of Financial Stability, Elsevier, vol. 33(C), pages 187-206.
    30. Sermpinis, Georgios & Stasinakis, Charalampos & Rosillo, Rafael & de la Fuente, David, 2017. "European Exchange Trading Funds Trading with Locally Weighted Support Vector Regression," European Journal of Operational Research, Elsevier, vol. 258(1), pages 372-384.
    31. Lin, Chien-Fu Jeff & Terasvirta, Timo, 1994. "Testing the constancy of regression parameters against continuous structural change," Journal of Econometrics, Elsevier, vol. 62(2), pages 211-228, June.
    32. Wu, Shaomin & Akbarov, Artur, 2011. "Support vector regression for warranty claim forecasting," European Journal of Operational Research, Elsevier, vol. 213(1), pages 196-204, August.
    33. Christian Dunis & Jason Laws & Georgios Sermpinis, 2010. "Higher order and recurrent neural architectures for trading the EUR/USD exchange rate," Quantitative Finance, Taylor & Francis Journals, vol. 11(4), pages 615-629.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Engin Tas & Ayca Hatice Atli, 2024. "Stock Price Ranking by Learning Pairwise Preferences," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 513-528, February.
    2. Yang Zhao & Charalampos Stasinakis & Georgios Sermpinis & Filipa Da Silva Fernandes, 2019. "Revisiting Fama–French factors' predictability with Bayesian modelling and copula‐based portfolio optimization," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1443-1463, October.
    3. Erdinc Akyildirim & Aurelio F. Bariviera & Duc Khuong Nguyen & Ahmet Sensoy, 2022. "Forecasting high-frequency stock returns: a comparison of alternative methods," Annals of Operations Research, Springer, vol. 313(2), pages 639-690, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sermpinis, Georgios & Stasinakis, Charalampos & Hassanniakalager, Arman, 2017. "Reverse adaptive krill herd locally weighted support vector regression for forecasting and trading exchange traded funds," European Journal of Operational Research, Elsevier, vol. 263(2), pages 540-558.
    2. Antonios K. Alexandridis & Ekaterini Panopoulou & Ioannis Souropanis, 2024. "Forecasting exchange rates: An iterated combination constrained predictor approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 983-1017, July.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Sermpinis, Georgios & Stasinakis, Charalampos & Theofilatos, Konstantinos & Karathanasopoulos, Andreas, 2015. "Modeling, forecasting and trading the EUR exchange rates with hybrid rolling genetic algorithms—Support vector regression forecast combinations," European Journal of Operational Research, Elsevier, vol. 247(3), pages 831-846.
    5. Sermpinis, Georgios & Stasinakis, Charalampos & Rosillo, Rafael & de la Fuente, David, 2017. "European Exchange Trading Funds Trading with Locally Weighted Support Vector Regression," European Journal of Operational Research, Elsevier, vol. 258(1), pages 372-384.
    6. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    7. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    8. Hong, Zhiwu & Niu, Linlin & Zhang, Chen, 2022. "Affine arbitrage-free yield net models with application to the euro debt crisis," Journal of Econometrics, Elsevier, vol. 230(1), pages 201-220.
    9. Monticini, Andrea & Ravazzolo, Francesco, 2014. "Forecasting the intraday market price of money," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 304-315.
    10. Zanetti Chini, Emilio, 2018. "Forecasting dynamically asymmetric fluctuations of the U.S. business cycle," International Journal of Forecasting, Elsevier, vol. 34(4), pages 711-732.
    11. Eijffinger, Sylvester C.W. & Pieterse-Bloem, Mary, 2023. "Eurozone government bond spreads: A tale of different ECB policy regimes," Journal of International Money and Finance, Elsevier, vol. 139(C).
    12. Norman R. Swanson & Weiqi Xiong & Xiye Yang, 2020. "Predicting interest rates using shrinkage methods, real‐time diffusion indexes, and model combinations," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(5), pages 587-613, August.
    13. Michiel De Pooter & Francesco Ravazzolo & Dick van Dijk, 2010. "Term structure forecasting using macro factors and forecast combination," International Finance Discussion Papers 993, Board of Governors of the Federal Reserve System (U.S.).
    14. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    15. Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
    16. Caldeira, João F. & Moura, Guilherme V. & Santos, André A.P., 2016. "Predicting the yield curve using forecast combinations," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 79-98.
    17. Ren, Yu & Liang, Xuanxuan & Wang, Qin, 2021. "Short-term exchange rate forecasting: A panel combination approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    18. Baltagi, Badi H., 2013. "Panel Data Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 995-1024, Elsevier.
    19. Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021. "Integration and Disintegration of EMU Government Bond Markets," Econometrics, MDPI, vol. 9(1), pages 1-17, March.
    20. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:282:y:2019:i:1:d:10.1007_s10479-018-2808-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.