IDEAS home Printed from https://ideas.repec.org/a/wly/isacfm/v13y2005i3p165-177.html
   My bibliography  Save this article

Forecasting annual excess stock returns via an adaptive network‐based fuzzy inference system

Author

Listed:
  • Brad S. Trinkle

Abstract

In this study, an adaptive network‐based fuzzy inference system (ANFIS) and a neural network were tested for the ability of these techniques to forecast the annual excess returns of three large publicly traded companies from a time series of said returns. The predictive ability of these techniques was compared with that of an autoregressive moving average (ARMA) model. The Fair–Shiller test was used in the comparisons in order to obtain results that were not subjective and so that conclusions could be made regarding the information used by the techniques in the generation of their forecasts. Since predictive ability does not translate to profitability, a simple trading strategy was used to determine the ability to generate profits from trading upon the forecasts of the respective techniques. As hypothesized, the ANFIS and neural network techniques are able to generate forecasts with significant predictive ability. However, neither technique dominates the other or the ARMA model. In tests of the ability of the techniques to generate profits from their forecasts, a simple trading strategy was used (trading on the predicted sign of the return). The ANFIS and the neural network generated profits in all of the trading scenarios. However, neither technique dominated the other, nor did they consistently outperform the traditional and naive models (strategies). The mixed results in the predictive ability tests and the profitability tests indicate that the conclusions from the study differ based upon the context in which the forecasts are used. Copyright © 2005 John Wiley & Sons, Ltd.

Suggested Citation

  • Brad S. Trinkle, 2005. "Forecasting annual excess stock returns via an adaptive network‐based fuzzy inference system," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 13(3), pages 165-177, July.
  • Handle: RePEc:wly:isacfm:v:13:y:2005:i:3:p:165-177
    DOI: 10.1002/isaf.264
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/isaf.264
    Download Restriction: no

    File URL: https://libkey.io/10.1002/isaf.264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Malhotra, Rashmi & Malhotra, D. K., 2002. "Differentiating between good credits and bad credits using neuro-fuzzy systems," European Journal of Operational Research, Elsevier, vol. 136(1), pages 190-211, January.
    2. Markku Lanne, 2002. "Testing The Predictability Of Stock Returns," The Review of Economics and Statistics, MIT Press, vol. 84(3), pages 407-415, August.
    3. Yih-Luan Chyi, 1997. "Nonlinear dynamics and daily stock returns on the Taiwan Stock Exchange," Applied Financial Economics, Taylor & Francis Journals, vol. 7(6), pages 619-634.
    4. Kanas, Angelos & Yannopoulos, Andreas, 2001. "Comparing linear and nonlinear forecasts for stock returns," International Review of Economics & Finance, Elsevier, vol. 10(4), pages 383-398, December.
    5. Kanas, Angelos, 2001. "Neural Network Linear Forecasts for Stock Returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 6(3), pages 245-254, July.
    6. Callen, Jeffrey L. & Kwan, Clarence C. Y. & Yip, Patrick C. Y. & Yuan, Yufei, 1996. "Neural network forecasting of quarterly accounting earnings," International Journal of Forecasting, Elsevier, vol. 12(4), pages 475-482, December.
    7. Fair, Ray C & Shiller, Robert J, 1990. "Comparing Information in Forecasts from Econometric Models," American Economic Review, American Economic Association, vol. 80(3), pages 375-389, June.
    8. Qi, Min, 1999. "Nonlinear Predictability of Stock Returns Using Financial and Economic Variables," Journal of Business & Economic Statistics, American Statistical Association, vol. 17(4), pages 419-429, October.
    9. Piramuthu, Selwyn, 1999. "Financial credit-risk evaluation with neural and neurofuzzy systems," European Journal of Operational Research, Elsevier, vol. 112(2), pages 310-321, January.
    10. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    11. Ruey-Chyn Tsaur & Hsiao-Fan Wang & Jia-Chi O.-Yang, 2002. "Fuzzy Regression For Seasonal Time Series Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 165-175.
    12. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    13. Kuo, R. J., 2001. "A sales forecasting system based on fuzzy neural network with initial weights generated by genetic algorithm," European Journal of Operational Research, Elsevier, vol. 129(3), pages 496-517, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tseng, Chih-Hsiung & Cheng, Sheng-Tzong & Wang, Yi-Hsien & Peng, Jin-Tang, 2008. "Artificial neural network model of the hybrid EGARCH volatility of the Taiwan stock index option prices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3192-3200.
    2. Tania Morris & Jules Comeau, 2020. "Portfolio creation using artificial neural networks and classification probabilities: a Canadian study," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(2), pages 133-163, June.
    3. Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
    4. Lukas Ryll & Sebastian Seidens, 2019. "Evaluating the Performance of Machine Learning Algorithms in Financial Market Forecasting: A Comprehensive Survey," Papers 1906.07786, arXiv.org, revised Jul 2019.
    5. McCracken,M.W. & West,K.D., 2001. "Inference about predictive ability," Working papers 14, Wisconsin Madison - Social Systems.
    6. Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring," European Journal of Operational Research, Elsevier, vol. 195(3), pages 942-959, June.
    7. Maasoumi, Esfandiar & Racine, Jeff, 2002. "Entropy and predictability of stock market returns," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 291-312, March.
    8. Shively, Philip A., 2007. "Asymmetric temporary and permanent stock-price innovations," Journal of Empirical Finance, Elsevier, vol. 14(1), pages 120-130, January.
    9. Gupta, Rangan & Majumdar, Anandamayee & Pierdzioch, Christian & Wohar, Mark E., 2017. "Do terror attacks predict gold returns? Evidence from a quantile-predictive-regression approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 276-284.
    10. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & George Kouretas, 2005. "Regime Switching and Artificial Neural Network Forecasting," Working Papers 0502, University of Crete, Department of Economics.
    11. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1413, August.
    12. Angela J. Black & David G. McMillan, 2004. "Non‐linear Predictability of Value and Growth Stocks and Economic Activity," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 31(3‐4), pages 439-474, April.
    13. Eleni Constantinou & Robert Georgiades & Avo Kazandjian & Georgios P. Kouretas, 2006. "Regime switching and artificial neural network forecasting of the Cyprus Stock Exchange daily returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 11(4), pages 371-383.
    14. Salman Bahoo & Marco Cucculelli & Xhoana Goga & Jasmine Mondolo, 2024. "Artificial intelligence in Finance: a comprehensive review through bibliometric and content analysis," SN Business & Economics, Springer, vol. 4(2), pages 1-46, February.
    15. Stanislav Anatolyev & Nikolay Gospodinov, 2007. "Modeling Financial Return Dynamics by Decomposition," Working Papers w0095, New Economic School (NES).
    16. N Aslanidis & D R Osborn & M Sensier, 2003. "Explaining movements in UK stock prices: How important is the US market?," Centre for Growth and Business Cycle Research Discussion Paper Series 27, Economics, The University of Manchester.
    17. Nektarios Aslanidis & Denise Osborn & Marianne Sensier, 2003. "Explaining movements in UK stock prices:," Working Papers 0302, University of Crete, Department of Economics.
    18. Paresh Kumar Narayan, 2005. "Are the Australian and New Zealand stock prices nonlinear with a unit root?," Applied Economics, Taylor & Francis Journals, vol. 37(18), pages 2161-2166.
    19. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    20. Chang, Kuang-Liang, 2009. "Do macroeconomic variables have regime-dependent effects on stock return dynamics? Evidence from the Markov regime switching model," Economic Modelling, Elsevier, vol. 26(6), pages 1283-1299, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:isacfm:v:13:y:2005:i:3:p:165-177. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1099-1174/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.