Forecasting volatility in bitcoin market
Author
Abstract
Suggested Citation
DOI: 10.1007/s10436-020-00368-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Baur, Dirk G. & Dimpfl, Thomas & Kuck, Konstantin, 2018. "Bitcoin, gold and the US dollar – A replication and extension," Finance Research Letters, Elsevier, vol. 25(C), pages 103-110.
- Conrad, Christian, 2010.
"Non-negativity conditions for the hyperbolic GARCH model,"
Journal of Econometrics, Elsevier, vol. 157(2), pages 441-457, August.
- Christian Conrad, 2007. "Non-negativity Conditions for the Hyperbolic GARCH Model," KOF Working papers 07-162, KOF Swiss Economic Institute, ETH Zurich.
- Lux, Thomas, 2008.
"The Markov-Switching Multifractal Model of Asset Returns: GMM Estimation and Linear Forecasting of Volatility,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 194-210, April.
- Lux, Thomas, 2004. "The Markov-switching multi-fractal model of asset returns: GMM estimation and linear forecasting of volatility," Economics Working Papers 2004-11, Christian-Albrechts-University of Kiel, Department of Economics.
- Lux, Thomas, 2006. "The Markov-Switching Multifractal Model of asset returns: GMM estimation and linear forecasting of volatility," Economics Working Papers 2006-17, Christian-Albrechts-University of Kiel, Department of Economics.
- Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
- Calvet, Laurent & Fisher, Adlai, 2001.
"Forecasting multifractal volatility,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
- Laurent Calvet & Adlai Fisher, 1999. "Forecasting Multifractal Volatility," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-017, New York University, Leonard N. Stern School of Business-.
- Laurent-Emmanuel Calvet & Adlai J. Fisher, 2001. "Forecasting multifractal volatility," Post-Print hal-00477952, HAL.
- Laurent Calvet, 2000. "Forecasting Multifractal Volatility," Harvard Institute of Economic Research Working Papers 1902, Harvard - Institute of Economic Research.
- Christian Conrad & Berthold R. Haag, 2006. "Inequality Constraints in the Fractionally Integrated GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 4(3), pages 413-449.
- Laurent E. Calvet, 2004.
"How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes,"
Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 49-83.
- Laurent-Emmanuel Calvet & Adlai J. Fisher, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Post-Print hal-00478472, HAL.
- Stjepan Beguv{s}i'c & Zvonko Kostanjv{c}ar & H. Eugene Stanley & Boris Podobnik, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Papers 1803.08405, arXiv.org.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Bouri, Elie & Azzi, Georges & Dyhrberg, Anne Haubo, 2017.
"On the return-volatility relationship in the Bitcoin market around the price crash of 2013,"
Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 11, pages 1-16.
- Bouri, Elie & Azzi, Georges & Haubo Dyhrberg, Anne, 2016. "On the return-volatility relationship in the Bitcoin market around the price crash of 2013," Economics Discussion Papers 2016-41, Kiel Institute for the World Economy (IfW Kiel).
- Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
- Balcombe, Kelvin & Fraser, Iain, 2017. "Do bubbles have an explosive signature in markov switching models?," Economic Modelling, Elsevier, vol. 66(C), pages 81-100.
- Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
- Bariviera, Aurelio F. & Basgall, María José & Hasperué, Waldo & Naiouf, Marcelo, 2017.
"Some stylized facts of the Bitcoin market,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 484(C), pages 82-90.
- Aurelio F. Bariviera & Mar'ia Jos'e Basgall & Waldo Hasperu'e & Marcelo Naiouf, 2017. "Some stylized facts of the Bitcoin market," Papers 1708.04532, arXiv.org.
- Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
- Bariviera, Aurelio F., 2017.
"The inefficiency of Bitcoin revisited: A dynamic approach,"
Economics Letters, Elsevier, vol. 161(C), pages 1-4.
- Aurelio F. Bariviera, 2017. "The inefficiency of Bitcoin revisited: a dynamic approach," Papers 1709.08090, arXiv.org.
- Ling, Shiqing & McAleer, Michael, 2002.
"NECESSARY AND SUFFICIENT MOMENT CONDITIONS FOR THE GARCH(r,s) AND ASYMMETRIC POWER GARCH(r,s) MODELS,"
Econometric Theory, Cambridge University Press, vol. 18(3), pages 722-729, June.
- Shiqing Ling & Michael McAleer, 2001. "Necessary and Sufficient Moment Conditions for the GARCH(r,s) and Asymmetric Power GARCH(r,s) Models," ISER Discussion Paper 0534, Institute of Social and Economic Research, Osaka University.
- Bougerol, Philippe & Picard, Nico, 1992. "Stationarity of Garch processes and of some nonnegative time series," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 115-127.
- Thies, Sven & Molnár, Peter, 2018. "Bayesian change point analysis of Bitcoin returns," Finance Research Letters, Elsevier, vol. 27(C), pages 223-227.
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Liu, Ruipeng & Di Matteo, T. & Lux, Thomas, 2007.
"True and apparent scaling: The proximity of the Markov-switching multifractal model to long-range dependence,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 383(1), pages 35-42.
- Ruipeng Liu & T. Di Matteo & Thomas Lux, 2007. "True and Apparent Scaling: The Proximity of the Markov-Switching Multifractal Model to Long-Range Dependence," Papers 0704.1338, arXiv.org.
- Liu, Ruipeng & Di Matteo, Tiziana & Lux, Thomas, 2007. "True and Apparent Scaling: The Proximity of the Markov- Switching Multifractal Model to Long-Range Dependence," Economics Working Papers 2007-06, Christian-Albrechts-University of Kiel, Department of Economics.
- Stavros Stavroyiannis, 2018. "Value-at-risk and related measures for the Bitcoin," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 19(2), pages 127-136, March.
- Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
- Joerg Osterrieder & Julian Lorenz, 2017. "A Statistical Risk Assessment Of Bitcoin And Its Extreme Tail Behavior," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 12(01), pages 1-19, March.
- Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
- Granger, Clive W. J. & Terasvirta, Timo, 1999.
"A simple nonlinear time series model with misleading linear properties,"
Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
- Granger, Clive W.J. & Teräsvirta, Timo, 1998. "A simple nonlinear time series model with misleading linear properties," SSE/EFI Working Paper Series in Economics and Finance 237, Stockholm School of Economics.
- Begušić, Stjepan & Kostanjčar, Zvonko & Eugene Stanley, H. & Podobnik, Boris, 2018. "Scaling properties of extreme price fluctuations in Bitcoin markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 400-406.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Jeffrey Chu & Stephen Chan & Saralees Nadarajah & Joerg Osterrieder, 2017. "GARCH Modelling of Cryptocurrencies," JRFM, MDPI, vol. 10(4), pages 1-15, October.
- Davidson, James, 2004. "Moment and Memory Properties of Linear Conditional Heteroscedasticity Models, and a New Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 16-29, January.
- Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
- Ling, Shiqing & McAleer, Michael, 2002.
"Stationarity and the existence of moments of a family of GARCH processes,"
Journal of Econometrics, Elsevier, vol. 106(1), pages 109-117, January.
- Shiqing Ling & Michael McAleer, 2001. "Stationarity and the Existence of Moments of a Family of GARCH Processes," ISER Discussion Paper 0535, Institute of Social and Economic Research, Osaka University.
- Ji-Chun Liu, 2006. "Stationarity of a Markov-Switching GARCH Model," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 573-593.
- Lux, Thomas & Morales-Arias, Leonardo, 2010. "Forecasting volatility under fractality, regime-switching, long memory and student-t innovations," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2676-2692, November.
- Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
- Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
- Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
- Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
- Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
- C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
- Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
- Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
- Leopoldo Catania & Stefano Grassi, 2017. "Modelling Crypto-Currencies Financial Time-Series," CEIS Research Paper 417, Tor Vergata University, CEIS, revised 11 Dec 2017.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hasanov, Akram Shavkatovich & Burkhanov, Aktam Usmanovich & Usmonov, Bunyod & Khajimuratov, Nizomjon Shukurullaevich & Khurramova, Madina Mansur qizi, 2024. "The role of sudden variance shifts in predicting volatility in bioenergy crop markets under structural breaks," Energy, Elsevier, vol. 293(C).
- Azhar Mohamad & Sarveshwar Kumar Inani, 2023. "Price discovery in bitcoin spot or futures during the Covid-19 pandemic? Evidence from the time-varying parameter vector autoregressive model with stochastic volatility," Applied Economics Letters, Taylor & Francis Journals, vol. 30(19), pages 2749-2757, November.
- Johann Lussange & Stefano Vrizzi & Stefano Palminteri & Boris Gutkin, 2024. "Modelling crypto markets by multi-agent reinforcement learning," Papers 2402.10803, arXiv.org.
- Amaro, Raphael & Pinho, Carlos, 2022. "Energy commodities: A study on model selection for estimating Value-at-Risk," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 5-27.
- Jalan, Akanksha & Matkovskyy, Roman & Urquhart, Andrew & Yarovaya, Larisa, 2023.
"The role of interpersonal trust in cryptocurrency adoption,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 83(C).
- Akanksha Jalan & Roman Matkovskyy & Andrew Urquhart & Larisa Yarovaya, 2023. "The role of interpersonal trust in cryptocurrency adoption," Post-Print hal-03946536, HAL.
- Efstathios Polyzos & Costas Siriopoulos, 2024. "Autoregressive Random Forests: Machine Learning and Lag Selection for Financial Research," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 225-262, July.
- Gradojevic, Nikola & Tsiakas, Ilias, 2021. "Volatility cascades in cryptocurrency trading," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 252-265.
- Łęt Blanka & Sobański Konrad & Świder Wojciech & Włosik Katarzyna, 2022. "Is the cryptocurrency market efficient? Evidence from an analysis of fundamental factors for Bitcoin and Ethereum," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 58(4), pages 351-370, December.
- Walid Chkili, 2021. "Modeling Bitcoin price volatility: long memory vs Markov switching," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 433-448, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mawuli Segnon & Stelios Bekiros, 2019. "Forecasting Volatility in Cryptocurrency Markets," CQE Working Papers 7919, Center for Quantitative Economics (CQE), University of Muenster.
- Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2021.
"High-Frequency Volatility Forecasting of US Housing Markets,"
The Journal of Real Estate Finance and Economics, Springer, vol. 62(2), pages 283-317, February.
- Mawuli Segnon & Rangan Gupta & Keagile Lesame & Mark E. Wohar, 2019. "High-Frequency Volatility Forecasting of US Housing Markets," Working Papers 201977, University of Pretoria, Department of Economics.
- Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2015.
"Modeling and forecasting crude oil price volatility: Evidence from historical and recent data,"
FinMaP-Working Papers
31, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
- Thomas Lux & Mawuli K. Segnon & Rangan Gupta, 2015. "Modeling and Forecasting Crude Oil Price Volatility: Evidence from Historical and Recent Data," Working Papers 201511, University of Pretoria, Department of Economics.
- Panagiotidis, Theodore & Papapanagiotou, Georgios & Stengos, Thanasis, 2022.
"On the volatility of cryptocurrencies,"
Research in International Business and Finance, Elsevier, vol. 62(C).
- Thanasis Stengos & Theodore Panagiotidis & Georgios Papapanagiotou, 2022. "On the volatility of cryptocurrencies," Working Papers 2202, University of Guelph, Department of Economics and Finance.
- T. Takaishi, 2021. "Power-Law Return-Volatility Cross Correlations of Bitcoin," Papers 2102.08187, arXiv.org.
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2019.
"Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting,"
Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 63(C).
- Walther, Thomas & Klein, Tony & Bouri, Elie, 2018. "Exogenous Drivers of Bitcoin and Cryptocurrency Volatility – A Mixed Data Sampling Approach to Forecasting," QBS Working Paper Series 2018/02, Queen's University Belfast, Queen's Business School.
- Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
- Segnon, Mawuli & Lux, Thomas, 2013. "Multifractal models in finance: Their origin, properties, and applications," Kiel Working Papers 1860, Kiel Institute for the World Economy (IfW Kiel).
- Cristina Chinazzo & Vahidin Jeleskovic, 2024. "Forecasting Bitcoin Volatility: A Comparative Analysis of Volatility Approaches," Papers 2401.02049, arXiv.org.
- Trucíos, Carlos, 2019. "Forecasting Bitcoin risk measures: A robust approach," International Journal of Forecasting, Elsevier, vol. 35(3), pages 836-847.
- Ardia, David & Bluteau, Keven & Rüede, Maxime, 2019. "Regime changes in Bitcoin GARCH volatility dynamics," Finance Research Letters, Elsevier, vol. 29(C), pages 266-271.
- Leandro Maciel, 2021. "Cryptocurrencies value‐at‐risk and expected shortfall: Do regime‐switching volatility models improve forecasting?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4840-4855, July.
- Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
- Tan, Chia-Yen & Koh, You-Beng & Ng, Kok-Haur & Ng, Kooi-Huat, 2021. "Dynamic volatility modelling of Bitcoin using time-varying transition probability Markov-switching GARCH model," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
- Tetsuya Takaishi, 2021. "Time-varying properties of asymmetric volatility and multifractality in Bitcoin," Papers 2102.07425, arXiv.org.
- Cheikh, Nidhaleddine Ben & Zaied, Younes Ben & Chevallier, Julien, 2020. "Asymmetric volatility in cryptocurrency markets: New evidence from smooth transition GARCH models," Finance Research Letters, Elsevier, vol. 35(C).
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018.
"Forecasting Inflation Uncertainty in the G7 Countries,"
Econometrics, MDPI, vol. 6(2), pages 1-25, April.
- Mawuli Segnon & Stelios Bekiros & Bernd Wilfling, 2018. "Forecasting Inflation Uncertainty in the G7 Countries," CQE Working Papers 7118, Center for Quantitative Economics (CQE), University of Muenster.
- Charles, Amélie & Darné, Olivier, 2017.
"Forecasting crude-oil market volatility: Further evidence with jumps,"
Energy Economics, Elsevier, vol. 67(C), pages 508-519.
- Amélie Charles & Olivier Darné, 2017. "Forecasting crude-oil market volatility: Further evidence with jumps," Post-Print hal-01598141, HAL.
- Pınar Kaya Soylu & Mustafa Okur & Özgür Çatıkkaş & Z. Ayca Altintig, 2020. "Long Memory in the Volatility of Selected Cryptocurrencies: Bitcoin, Ethereum and Ripple," JRFM, MDPI, vol. 13(6), pages 1-21, May.
More about this item
Keywords
Bitcoin; Multifractal processes; GARCH processes; Model confidence set; Likelihood ratio test;All these keywords.
JEL classification:
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:annfin:v:16:y:2020:i:3:d:10.1007_s10436-020-00368-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.