IDEAS home Printed from https://ideas.repec.org/a/rjr/romjef/vy2024i3p65-80.html
   My bibliography  Save this article

Volatility Transitions in European Stock Markets: A Clustering-Based Approach

Author

Listed:
  • Iulia LUPU

    (“Victor Slăvescu” Centre for Financial and Monetary Research, Romanian Academy, Bucharest (Romania))

  • Adina CRISTE

    (“Victor Slăvescu” Centre for Financial and Monetary Research, Romanian Academy, Bucharest (Romania))

  • Anca Dana DRAGU
  • Teodora Daniela ALBU

    (The National Institute of Economic Research, Romanian Academy, Bucharest (Romania))

Abstract

This paper investigates the dynamics of stock market volatilities across fifteen European countries using advanced clustering techniques and transition matrix analysis. The study leverages daily data from MSCI national indices covering the period from January 2008 to June 2024. We use a GARCH(1,1) model on daily log-returns to estimate volatilities. The objective is to analyze similar volatility dynamics across national indices. Therefore, we use a set of clustering algorithms that rely on the employment of Dynamic Time Warping (DTW) in combination with k-means, agglomerative clustering, Gaussian mixture and spectral analysis to identify clusters on a monthly basis. The optimal configuration of clusters is decided repetitively each month using metrics such as the Silhouette Score, Davies-Bouldin Index, Calinski-Harabasz Index, and Cluster Size Standard Deviation. Transition matrices are computed to capture the probabilities of transitioning between clusters over time, both for all countries collectively and for each country individually. The analysis includes the computation of stationary distributions and expected times in clusters, providing insights into the stability and long-term behavior of market volatilities. Our findings highlight significant differences in volatility patterns across countries, with implications for investors, policymakers, and financial analysts.

Suggested Citation

  • Iulia LUPU & Adina CRISTE & Anca Dana DRAGU & Teodora Daniela ALBU, 2024. "Volatility Transitions in European Stock Markets: A Clustering-Based Approach," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 65-80, October.
  • Handle: RePEc:rjr:romjef:v::y:2024:i:3:p:65-80
    as

    Download full text from publisher

    File URL: https://www.ipe.ro/ftp/RePEc/rjef3_2024/rjef3_2024p65-80.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    2. Zhaoyuan Li & Maozai Tian, 2017. "A New Method For Dynamic Stock Clustering Based On Spectral Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 50(3), pages 373-392, October.
    3. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    4. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    5. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    6. Fan Cai & Nhien-An Le-Khac & Tahar Kechadi, 2016. "Clustering Approaches for Financial Data Analysis: a Survey," Papers 1609.08520, arXiv.org.
    7. Coroneo, Laura & Jackson, Laura E. & Owyang, Michael T., 2020. "International Stock Comovements with Endogenous Clusters," Journal of Economic Dynamics and Control, Elsevier, vol. 116(C).
    8. Ömer ÖNALAN, 2022. "Joint Modelling of S&P500 and VIX Indices with Rough Fractional Ornstein-Uhlenbeck Volatility Model," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 68-84, April.
    9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    2. Aliyu, Shehu Usman Rano, 2020. "What have we learnt from modelling stock returns in Nigeria: Higgledy-piggledy?," MPRA Paper 110382, University Library of Munich, Germany, revised 06 Jun 2021.
    3. Yanlin Shi, 2023. "Long memory and regime switching in the stochastic volatility modelling," Annals of Operations Research, Springer, vol. 320(2), pages 999-1020, January.
    4. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
    5. Shi, Yanlin & Feng, Lingbing, 2016. "A discussion on the innovation distribution of the Markov regime-switching GARCH model," Economic Modelling, Elsevier, vol. 53(C), pages 278-288.
    6. Gloria González-Rivera & Tae-Hwy Lee, 2007. "Nonlinear Time Series in Financial Forecasting," Working Papers 200803, University of California at Riverside, Department of Economics, revised Feb 2008.
    7. Ho, Kin-Yip & Shi, Yanlin & Zhang, Zhaoyong, 2013. "How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches," The North American Journal of Economics and Finance, Elsevier, vol. 26(C), pages 436-456.
    8. Elyasiani, Elyas & Mansur, Iqbal & Pagano, Michael S., 2007. "Convergence and risk-return linkages across financial service firms," Journal of Banking & Finance, Elsevier, vol. 31(4), pages 1167-1190, April.
    9. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2021. "Option pricing with conditional GARCH models," European Journal of Operational Research, Elsevier, vol. 289(1), pages 350-363.
    10. June Cao & Chris Patel, 2020. "The role of the national institutional environment in IFRS convergence: a new approach," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3367-3406, December.
    11. Yepes Rodri­guez, Ramón, 2008. "Real option valuation of free destination in long-term liquefied natural gas supplies," Energy Economics, Elsevier, vol. 30(4), pages 1909-1932, July.
    12. Benlagha, Noureddine & Chargui, Sana, 2017. "Range-based and GARCH volatility estimation: Evidence from the French asset market," Global Finance Journal, Elsevier, vol. 32(C), pages 149-165.
    13. Shi, Yanlin & Ho, Kin-Yip & Liu, Wai-Man, 2016. "Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach," International Review of Economics & Finance, Elsevier, vol. 42(C), pages 291-312.
    14. Markus Vogl, 2022. "Quantitative modelling frontiers: a literature review on the evolution in financial and risk modelling after the financial crisis (2008–2019)," SN Business & Economics, Springer, vol. 2(12), pages 1-69, December.
    15. Naeem, Muhammad & Tiwari, Aviral Kumar & Mubashra, Sana & Shahbaz, Muhammad, 2019. "Modeling volatility of precious metals markets by using regime-switching GARCH models," Resources Policy, Elsevier, vol. 64(C).
    16. Allan Timmermann, 2018. "Forecasting Methods in Finance," Annual Review of Financial Economics, Annual Reviews, vol. 10(1), pages 449-479, November.
    17. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    18. Charles, Amélie, 2010. "The day-of-the-week effects on the volatility: The role of the asymmetry," European Journal of Operational Research, Elsevier, vol. 202(1), pages 143-152, April.
    19. Chao Wang & Richard Gerlach, 2021. "A Bayesian realized threshold measurement GARCH framework for financial tail risk forecasting," Papers 2106.00288, arXiv.org, revised Oct 2022.
    20. E. Ramos-P'erez & P. J. Alonso-Gonz'alez & J. J. N'u~nez-Vel'azquez, 2020. "Forecasting volatility with a stacked model based on a hybridized Artificial Neural Network," Papers 2006.16383, arXiv.org, revised Aug 2020.

    More about this item

    Keywords

    Stock Market Volatility; GARCH Model; Dynamic Time Warping (DTW); Clustering Analysis;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rjr:romjef:v::y:2024:i:3:p:65-80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Corina Saman (email available below). General contact details of provider: https://edirc.repec.org/data/ipacaro.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.