IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v37y2013i12p4943-4957.html
   My bibliography  Save this article

Forecasting EUR–USD implied volatility: The case of intraday data

Author

Listed:
  • Dunis, Christian
  • Kellard, Neil M.
  • Snaith, Stuart

Abstract

This study models and forecasts the evolution of intraday implied volatility on an underlying EUR–USD exchange rate for a number of maturities. To our knowledge we are the first to employ high frequency data in this context. This allows the construction of forecasting models that can attempt to exploit intraday seasonalities such as overnight effects. Results show that implied volatility is predictable at shorter horizons, within a given day and across the term structure. Moreover, at the conventional daily frequency, intraday seasonality effects can be used to augment the forecasting power of models. The type of inefficiency revealed suggests potentially profitable trading models.

Suggested Citation

  • Dunis, Christian & Kellard, Neil M. & Snaith, Stuart, 2013. "Forecasting EUR–USD implied volatility: The case of intraday data," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 4943-4957.
  • Handle: RePEc:eee:jbfina:v:37:y:2013:i:12:p:4943-4957
    DOI: 10.1016/j.jbankfin.2013.08.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426613003634
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2013.08.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    2. Clark, Todd E. & West, Kenneth D., 2006. "Using out-of-sample mean squared prediction errors to test the martingale difference hypothesis," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 155-186.
    3. Kellard, Neil & Dunis, Christian & Sarantis, Nicholas, 2010. "Foreign exchange, fractional cointegration and the implied-realized volatility relation," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 882-891, April.
    4. Guglielmo Maria Caporale & Luis A. Gil-Alana, 2010. "Long Memory and Fractional Integration in High Frequency Financial Time Series," Discussion Papers of DIW Berlin 1016, DIW Berlin, German Institute for Economic Research.
    5. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    6. Doyle, John R. & Chen, Catherine Huirong, 2009. "The wandering weekday effect in major stock markets," Journal of Banking & Finance, Elsevier, vol. 33(8), pages 1388-1399, August.
    7. Robert F. Engle & Magdalena E. Sokalska, 0. "Forecasting intraday volatility in the US equity market. Multiplicative component GARCH," Journal of Financial Econometrics, Oxford University Press, vol. 10(1), pages 54-83.
    8. Domenico Ferraro & Kenneth S. Rogoff & Barbara Rossi, 2011. "Can oil prices forecast exchange rates?," Working Papers 11-34, Federal Reserve Bank of Philadelphia.
    9. Bent Jesper Christensen & Charlotte Strunk Hansen, 2002. "New evidence on the implied-realized volatility relation," The European Journal of Finance, Taylor & Francis Journals, vol. 8(2), pages 187-205, June.
    10. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Andreou, Panayiotis C. & Charalambous, Chris & Martzoukos, Spiros H., 2010. "Generalized parameter functions for option pricing," Journal of Banking & Finance, Elsevier, vol. 34(3), pages 633-646, March.
    13. Chalamandaris, Georgios & Tsekrekos, Andrianos E., 2010. "Predictable dynamics in implied volatility surfaces from OTC currency options," Journal of Banking & Finance, Elsevier, vol. 34(6), pages 1175-1188, June.
    14. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
    15. Konstantinidi, Eirini & Skiadopoulos, George, 2011. "Are VIX futures prices predictable? An empirical investigation," International Journal of Forecasting, Elsevier, vol. 27(2), pages 543-560.
    16. Hibbert, Ann Marie & Daigler, Robert T. & Dupoyet, Brice, 2008. "A behavioral explanation for the negative asymmetric return-volatility relation," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2254-2266, October.
    17. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    18. Konstantinidi, Eirini & Skiadopoulos, George & Tzagkaraki, Emilia, 2008. "Can the evolution of implied volatility be forecasted? Evidence from European and US implied volatility indices," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2401-2411, November.
    19. Busch, Thomas & Christensen, Bent Jesper & Nielsen, Morten Ørregaard, 2011. "The role of implied volatility in forecasting future realized volatility and jumps in foreign exchange, stock, and bond markets," Journal of Econometrics, Elsevier, vol. 160(1), pages 48-57, January.
    20. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    21. Becker, Ralf & Clements, Adam E. & McClelland, Andrew, 2009. "The jump component of S&P 500 volatility and the VIX index," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1033-1038, June.
    22. Becker, Ralf & Clements, Adam E. & White, Scott I., 2007. "Does implied volatility provide any information beyond that captured in model-based volatility forecasts?," Journal of Banking & Finance, Elsevier, vol. 31(8), pages 2535-2549, August.
    23. Sílvia Gonçalves & Massimo Guidolin, 2006. "Predictable Dynamics in the S&P 500 Index Options Implied Volatility Surface," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1591-1636, May.
    24. S. Muzzioli, 2010. "Option-based forecasts of volatility: an empirical study in the DAX-index options market," The European Journal of Finance, Taylor & Francis Journals, vol. 16(6), pages 561-586.
    25. Taylor, Stephen J. & Yadav, Pradeep K. & Zhang, Yuanyuan, 2010. "The information content of implied volatilities and model-free volatility expectations: Evidence from options written on individual stocks," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 871-881, April.
    26. Serena Ng & Pierre Perron, 2001. "LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power," Econometrica, Econometric Society, vol. 69(6), pages 1519-1554, November.
    27. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
    28. Kim, Minho & Kim, Minchoul, 2003. "Implied volatility dynamics in the foreign exchange markets," Journal of International Money and Finance, Elsevier, vol. 22(4), pages 511-528, August.
    29. Dunis, Christian L & Huang, Xuehuan, 2002. "Forecasting and Trading Currency Volatility: An Application of Recurrent Neural Regression and Model Combination," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(5), pages 317-354, August.
    30. Momtchil Pojarliev & Richard M. Levich, 2007. "Do Professional Currency Managers Beat the Benchmark?," NBER Working Papers 13714, National Bureau of Economic Research, Inc.
    31. repec:bla:jfinan:v:53:y:1998:i:6:p:2059-2106 is not listed on IDEAS
    32. Locke, P R & Sayers, C L, 1993. "Intra-day Futures Price Volatility: Information Effects and Variance Persistence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(1), pages 15-30, Jan.-Marc.
    33. Charles J. Corrado & Thomas W. Miller, 2006. "Estimating Expected Excess Returns Using Historical And Option‐Implied Volatility," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 29(1), pages 95-112, March.
    34. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    35. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai T. Hoang & Dirk G. Baur, 2020. "Forecasting bitcoin volatility: Evidence from the options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(10), pages 1584-1602, October.
    2. Yanhui Chen & Kin Lai & Jiangze Du, 2014. "Modeling and forecasting Hang Seng index volatility with day-of-week effect, spillover effect based on ARIMA and HAR," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 4(2), pages 113-132, December.
    3. Jorge V. Pérez-Rodríguez, 2020. "Another look at the implied and realised volatility relation: a copula-based approach," Risk Management, Palgrave Macmillan, vol. 22(1), pages 38-64, March.
    4. Cao, Yi & Liu, Xiaoquan & Zhai, Jia, 2021. "Option valuation under no-arbitrage constraints with neural networks," European Journal of Operational Research, Elsevier, vol. 293(1), pages 361-374.
    5. Bastien Baldacci, 2020. "High-frequency dynamics of the implied volatility surface," Papers 2012.10875, arXiv.org.
    6. Panagiotis Delis & Stavros Degiannakis & Konstantinos Giannopoulos, 2023. "What Should be Taken into Consideration when Forecasting Oil Implied Volatility Index?," The Energy Journal, , vol. 44(5), pages 231-250, September.
    7. Michael Frömmel & Eyup Kadioglu, 2023. "Impact of trading hours extensions on foreign exchange volatility: intraday evidence from the Moscow exchange," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    8. Chen, An-Sing & Chang, Hung-Chou & Cheng, Lee-Young, 2019. "Time-varying Variance Scaling: Application of the Fractionally Integrated ARMA Model," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 1-12.
    9. Davood Pirayesh Neghab & Mucahit Cevik & M. I. M. Wahab, 2023. "Explaining Exchange Rate Forecasts with Macroeconomic Fundamentals Using Interpretive Machine Learning," Papers 2303.16149, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kearney, Fearghal & Shang, Han Lin & Sheenan, Lisa, 2019. "Implied volatility surface predictability: The case of commodity markets," Journal of Banking & Finance, Elsevier, vol. 108(C).
    2. Degiannakis, Stavros & Filis, George, 2017. "Forecasting oil price realized volatility using information channels from other asset classes," Journal of International Money and Finance, Elsevier, vol. 76(C), pages 28-49.
    3. Degiannakis, Stavros & Filis, George & Hassani, Hossein, 2018. "Forecasting global stock market implied volatility indices," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 111-129.
    4. Ballestra, Luca Vincenzo & Guizzardi, Andrea & Palladini, Fabio, 2019. "Forecasting and trading on the VIX futures market: A neural network approach based on open to close returns and coincident indicators," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1250-1262.
    5. Degiannakis, Stavros, 2018. "Multiple days ahead realized volatility forecasting: Single, combined and average forecasts," Global Finance Journal, Elsevier, vol. 36(C), pages 41-61.
    6. Jayawardena, Nirodha I. & Todorova, Neda & Li, Bin & Su, Jen-Je, 2020. "Volatility forecasting using related markets’ information for the Tokyo stock exchange," Economic Modelling, Elsevier, vol. 90(C), pages 143-158.
    7. Imlak Shaikh & Puja Padhi, 2014. "The forecasting performance of implied volatility index: evidence from India VIX," Economic Change and Restructuring, Springer, vol. 47(4), pages 251-274, November.
    8. Sébastien Laurent & Jeroen V. K. Rombouts & Francesco Violante, 2012. "On the forecasting accuracy of multivariate GARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 27(6), pages 934-955, September.
    9. Mariano, Roberto S. & Preve, Daniel, 2012. "Statistical tests for multiple forecast comparison," Journal of Econometrics, Elsevier, vol. 169(1), pages 123-130.
    10. Psaradellis, Ioannis & Sermpinis, Georgios, 2016. "Modelling and trading the U.S. implied volatility indices. Evidence from the VIX, VXN and VXD indices," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1268-1283.
    11. Peter Malec, 2016. "A Semiparametric Intraday GARCH Model," Cambridge Working Papers in Economics 1633, Faculty of Economics, University of Cambridge.
    12. Tanya Molodtsova & Alex Nikolsko-Rzhevskyy & David H. Papell, 2011. "Taylor Rules and the Euro," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43, pages 535-552, March.
    13. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    14. Giot, Pierre & Petitjean, Mikael, 2007. "The information content of the Bond-Equity Yield Ratio: Better than a random walk?," International Journal of Forecasting, Elsevier, vol. 23(2), pages 289-305.
    15. Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
    16. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    17. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    18. Kirstin Hubrich & Kenneth D. West, 2010. "Forecast evaluation of small nested model sets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 574-594.
    19. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    20. Bernales, Alejandro & Guidolin, Massimo, 2014. "Can we forecast the implied volatility surface dynamics of equity options? Predictability and economic value tests," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 326-342.

    More about this item

    Keywords

    Exchange rates; Implied volatility; Intraday data; Out-of-sample prediction;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:37:y:2013:i:12:p:4943-4957. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.