IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2019-23.html
   My bibliography  Save this paper

Global Temperatures and Greenhouse Gases: A Common Features Approach

Author

Listed:
  • Li Chen
  • Jiti Gao
  • Farshid Vahid

Abstract

We propose a common features approach and establish that global temperatures and greenhouse gases share a common trend without conditioning on the exact nature of their trends. We also find deterministic cycles in global temperature series with a period of 72 years whose amplitude is non-negligible compared to the warming effect caused by anthropogenic greenhouse gas emissions. We also explore the direction of causation in the co-trending relationship by establishing an error correction mechanism, which shows that greenhouse gas emissions do not respond to the equilibrium errors whereas the global temperature responds to equilibrium errors so as to maintain the co-trending relationship. Finally, we forecast future temperatures conditional on representative concentration pathways (RCP) of greenhouse gases considered by the intergovernmental panel on climate change (IPCC). Our forecasts show that the cyclical component could play a significant role in the next 30 years in such a way that would make the politics of effective emission control policy making more challenging.

Suggested Citation

  • Li Chen & Jiti Gao & Farshid Vahid, 2019. "Global Temperatures and Greenhouse Gases: A Common Features Approach," Monash Econometrics and Business Statistics Working Papers 23/19, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2019-23
    as

    Download full text from publisher

    File URL: https://www.monash.edu/business/ebs/research/publications/ebs/wp23-2019.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Vahid, F & Engle, Robert F, 1993. "Common Trends and Common Cycles," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(4), pages 341-360, Oct.-Dec..
    2. Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992. "Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
    3. Mads Faurschou Knudsen & Marit-Solveig Seidenkrantz & Bo Holm Jacobsen & Antoon Kuijpers, 2011. "Tracking the Atlantic Multidecadal Oscillation through the last 8,000 years," Nature Communications, Nature, vol. 2(1), pages 1-8, September.
    4. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    5. Phillips, Peter C.B., 2005. "Challenges of trending time series econometrics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 68(5), pages 401-416.
    6. Cai, Zongwu, 2007. "Trending time-varying coefficient time series models with serially correlated errors," Journal of Econometrics, Elsevier, vol. 136(1), pages 163-188, January.
    7. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 369-380, October.
    8. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    9. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    10. Engle, Robert F & Kozicki, Sharon, 1993. "Testing for Common Features: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(4), pages 393-395, October.
    11. Trevor Breusch & Farshid Vahid, 2008. "Global Temperature Trends," ANU Working Papers in Economics and Econometrics 2008-495, Australian National University, College of Business and Economics, School of Economics.
    12. Bruns, Stephan B. & Csereklyei, Zsuzsanna & Stern, David I., 2020. "A multicointegration model of global climate change," Journal of Econometrics, Elsevier, vol. 214(1), pages 175-197.
    13. Magnus, Jan R. & Melenberg, Bertrand & Muris, Chris, 2011. "Global Warming and Local Dimming: The Statistical Evidence," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 452-464.
    14. Peter C. B. Phillips, 2010. "The Mysteries of Trend," Cowles Foundation Discussion Papers 1771, Cowles Foundation for Research in Economics, Yale University.
    15. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    16. Graham Elliott & Allan Timmermann, 2016. "Forecasting in Economics and Finance," Annual Review of Economics, Annual Reviews, vol. 8(1), pages 81-110, October.
    17. Phillips, Peter C. B., 2001. "Trending time series and macroeconomic activity: Some present and future challenges," Journal of Econometrics, Elsevier, vol. 100(1), pages 21-27, January.
    18. Chang, Yoosoon & Kaufmann, Robert K. & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2020. "Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate," Journal of Econometrics, Elsevier, vol. 214(1), pages 274-294.
    19. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    20. Engle, Robert F & Hylleberg, Svend, 1996. "Common Seasonal Features: Global Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 58(4), pages 615-630, November.
    21. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    22. Peter C. B. Phillips, 1998. "New Tools for Understanding Spurious Regressions," Econometrica, Econometric Society, vol. 66(6), pages 1299-1326, November.
    23. Kim, Dukpa & Oka, Tatsushi & Estrada, Francisco & Perron, Pierre, 2020. "Inference related to common breaks in a multivariate system with joined segmented trends with applications to global and hemispheric temperatures," Journal of Econometrics, Elsevier, vol. 214(1), pages 130-152.
    24. Francisco Estrada & Pierre Perron & Benjamin Martinez-Lopez, 2013. "Statistically-derived contributions of diverse human influences to 20th century temperature changes," Boston University - Department of Economics - Working Papers Series 2013-017, Boston University - Department of Economics.
    25. Anderson, Heather M. & Vahid, Farshid, 1998. "Testing multiple equation systems for common nonlinear components," Journal of Econometrics, Elsevier, vol. 84(1), pages 1-36, May.
    26. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    27. Graham Elliott, 1998. "On the Robustness of Cointegration Methods when Regressors Almost Have Unit Roots," Econometrica, Econometric Society, vol. 66(1), pages 149-158, January.
    28. Cheng Hsiao, 1997. "Statistical Properties of the Two-Stage Least Squares Estimator Under Cointegration," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(3), pages 385-398.
    29. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    30. Malte Meinshausen & S. Smith & K. Calvin & J. Daniel & M. Kainuma & J-F. Lamarque & K. Matsumoto & S. Montzka & S. Raper & K. Riahi & A. Thomson & G. Velders & D.P. Vuuren, 2011. "The RCP greenhouse gas concentrations and their extensions from 1765 to 2300," Climatic Change, Springer, vol. 109(1), pages 213-241, November.
    31. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    32. Jiti Gao & Kim Hawthorne, 2006. "Semiparametric estimation and testing of the trend of temperature series," Econometrics Journal, Royal Economic Society, vol. 9(2), pages 332-355, July.
    33. DeJong, David N. & Nankervis, John C. & Savin, N. E. & Whiteman, Charles H., 1992. "The power problems of unit root test in time series with autoregressive errors," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 323-343.
    34. Robert Kaufmann & Heikki Kauppi & Michael Mann & James Stock, 2013. "Does temperature contain a stochastic trend: linking statistical results to physical mechanisms," Climatic Change, Springer, vol. 118(3), pages 729-743, June.
    35. Ulrich K. Müller & Mark W. Watson, 2018. "Long†Run Covariability," Econometrica, Econometric Society, vol. 86(3), pages 775-804, May.
    36. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(3), pages 468-497, December.
    37. Bierens, Herman J., 1997. "Testing the unit root with drift hypothesis against nonlinear trend stationarity, with an application to the US price level and interest rate," Journal of Econometrics, Elsevier, vol. 81(1), pages 29-64, November.
    38. Engle, Robert F. & Issler, João Victor, 1993. "Common trends and common cycles in Latin America," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 47(2), April.
    39. Pretis, Felix, 2020. "Econometric modelling of climate systems: The equivalence of energy balance models and cointegrated vector autoregressions," Journal of Econometrics, Elsevier, vol. 214(1), pages 256-273.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "Temperature in the Iberian Peninsula: Trend, seasonality, and heterogeneity," Papers 2406.14145, arXiv.org.
    2. Liang Chen & Juan J. Dolado & Jesús Gonzalo & Andrey Ramos, 2023. "Heterogeneous predictive association of CO2 with global warming," Economica, London School of Economics and Political Science, vol. 90(360), pages 1397-1421, October.
    3. Gadea Rivas, María Dolores & Ramos, Andrey, 2023. "Trends in temperature data: micro-foundations of their nature," UC3M Working papers. Economics 39045, Universidad Carlos III de Madrid. Departamento de Economía.
    4. Anderson, Heather M. & Gao, Jiti & Turnip, Guido & Vahid, Farshid & Wei, Wei, 2023. "Estimating the effect of an EU-ETS type scheme in Australia using a synthetic treatment approach," Energy Economics, Elsevier, vol. 125(C).
    5. Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
    6. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Greasley & Les Oxley, 2010. "Cliometrics And Time Series Econometrics: Some Theory And Applications," Journal of Economic Surveys, Wiley Blackwell, vol. 24(5), pages 970-1042, December.
    2. Zhou, Weilun & Gao, Jiti & Harris, David & Kew, Hsein, 2024. "Semi-parametric single-index predictive regression models with cointegrated regressors," Journal of Econometrics, Elsevier, vol. 238(1).
    3. Cribari-Neto, Francisco, 1996. "On time series econometrics," The Quarterly Review of Economics and Finance, Elsevier, vol. 36(Supplemen), pages 37-60.
    4. González-Rivera, Gloria & Rodríguez Caballero, Carlos Vladimir, 2023. "Modelling intervals of minimum/maximum temperatures in the Iberian Peninsula," DES - Working Papers. Statistics and Econometrics. WS 37968, Universidad Carlos III de Madrid. Departamento de Estadística.
    5. Corradi, Valentina & Swanson, Norman R., 2006. "The effect of data transformation on common cycle, cointegration, and unit root tests: Monte Carlo results and a simple test," Journal of Econometrics, Elsevier, vol. 132(1), pages 195-229, May.
    6. Niels Haldrup & Robinson Kruse & Timo Teräsvirta & Rasmus T. Varneskov, 2013. "Unit roots, non-linearities and structural breaks," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 4, pages 61-94, Edward Elgar Publishing.
    7. Haiqi Li Author-Name-First: Haiqi & Jing Zhang & Chaowen Zheng, 2023. "Estimating and Testing for Functional Coefficient Quantile Cointegrating Regression," Economics Discussion Papers em-dp2023-07, Department of Economics, University of Reading.
    8. C. Vladimir Rodr'iguez-Caballero & Esther Ruiz, 2024. "Temperature in the Iberian Peninsula: Trend, seasonality, and heterogeneity," Papers 2406.14145, arXiv.org.
    9. Yicong Lin & Hanno Reuvers, 2019. "Efficient Estimation by Fully Modified GLS with an Application to the Environmental Kuznets Curve," Papers 1908.02552, arXiv.org, revised Aug 2020.
    10. Xu, Ke-Li, 2016. "Multivariate trend function testing with mixed stationary and integrated disturbances," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 38-57.
    11. Ekaterini Panopoulou, 2005. "A Resolution of the Fisher Effect Puzzle: A Comparison of Estimators," Money Macro and Finance (MMF) Research Group Conference 2005 18, Money Macro and Finance Research Group.
    12. Yu, Deshui & Huang, Difang & Chen, Li, 2023. "Stock return predictability and cyclical movements in valuation ratios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 36-53.
    13. Alain Hecq & Elisa Voisin, 2023. "Predicting Crashes in Oil Prices During The Covid-19 Pandemic with Mixed Causal-Noncausal Models," Advances in Econometrics, in: Essays in Honor of Joon Y. Park: Econometric Methodology in Empirical Applications, volume 45, pages 209-233, Emerald Group Publishing Limited.
    14. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    15. Hecq, A.W. & Issler, J.V., 2012. "A common-feature approach for testing present-value restrictions with financial data," Research Memorandum 006, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    16. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, Department of Economics and Business Economics, Aarhus University.
    17. Issler, João Victor & Rodrigues, Claudia & Burjack, Rafael, 2014. "Using common features to understand the behavior of metal-commodity prices and forecast them at different horizons," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 310-335.
    18. Peter C. B. Phillips & Zhijie Xiao, 1998. "A Primer on Unit Root Testing," Journal of Economic Surveys, Wiley Blackwell, vol. 12(5), pages 423-470, December.
    19. Cubadda, Gianluca, 1999. "Common Cycles in Seasonal Non-stationary Time Series," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(3), pages 273-291, May-June.
    20. Müller, Ulrich K. & Watson, Mark W., 2013. "Low-frequency robust cointegration testing," Journal of Econometrics, Elsevier, vol. 174(2), pages 66-81.

    More about this item

    Keywords

    climate change; cycle; endogeneity; trending behaviour.;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2019-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.