IDEAS home Printed from https://ideas.repec.org/p/kyo/wpaper/720.html
   My bibliography  Save this paper

How Accurate are Government Forecasts of Economic Fundamentals? The Case of Taiwan

Author

Listed:
  • Chia-Lin Chang

    (Department of Applied Economics, National Chung Hsing University)

  • Philip Hans Franses

    (Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam)

  • Michael McAleer

    (Erasmus University Rotterdam, Tinbergen Institute, The Netherlands, and Institute of Economic Research, Kyoto University)

Abstract

A government's ability to forecast key economic fundamentals accurately can affect business confidence, consumer sentiment, and foreign direct investment, among others. A government forecast based on an econometric model is replicable, whereas one that is not fully based on an econometric model is non-replicable. Governments typically provide non-replicable forecasts (or, expert forecasts) of economic fundamentals, such as the inflation rate and real GDP growth rate. In this paper, we develop a methodology to evaluate non-replicable forecasts. We argue that in order to do so, one needs to retrieve from the non-replicable forecast its replicable component, and that it is the difference in accuracy between these two that matters. An empirical example to forecast economic fundamentals for Taiwan shows the relevance of the proposed methodological approach. Our main finding is that it is the undocumented knowledge of the Taiwanese government that reduces forecast errors substantially.

Suggested Citation

  • Chia-Lin Chang & Philip Hans Franses & Michael McAleer, 2010. "How Accurate are Government Forecasts of Economic Fundamentals? The Case of Taiwan," KIER Working Papers 720, Kyoto University, Institute of Economic Research.
  • Handle: RePEc:kyo:wpaper:720
    as

    Download full text from publisher

    File URL: http://www.kier.kyoto-u.ac.jp/DP/DP720.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mcleer, M. & Mckenzie, C.R., 1989. "When Are Two Step Estimators Efficient?," Papers 179, Australian National University - Department of Economics.
    2. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    3. Franses, Philip Hans, 2008. "Merging models and experts," International Journal of Forecasting, Elsevier, vol. 24(1), pages 31-33.
    4. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2009. "Expert opinion versus expertise in forecasting," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 334-346, August.
    5. Philip Hans Franses & Rianne Legerstee, 2010. "Do experts' adjustments on model-based SKU-level forecasts improve forecast quality?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 331-340.
    6. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    7. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    8. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    9. Goodwin, Paul, 2000. "Improving the voluntary integration of statistical forecasts and judgment," International Journal of Forecasting, Elsevier, vol. 16(1), pages 85-99.
    10. Fildes, Robert & Goodwin, Paul & Lawrence, Michael & Nikolopoulos, Konstantinos, 2009. "Effective forecasting and judgmental adjustments: an empirical evaluation and strategies for improvement in supply-chain planning," International Journal of Forecasting, Elsevier, vol. 25(1), pages 3-23.
    11. Fiebig, Denzil G. & McAleer, Michael & Bartels, Robert, 1992. "Properties of ordinary least squares estimators in regression models with nonspherical disturbances," Journal of Econometrics, Elsevier, vol. 54(1-3), pages 321-334.
    12. Patton, Andrew J. & Timmermann, Allan, 2007. "Properties of optimal forecasts under asymmetric loss and nonlinearity," Journal of Econometrics, Elsevier, vol. 140(2), pages 884-918, October.
    13. repec:bla:ecorec:v:68:y:1992:i:200:p:65-72 is not listed on IDEAS
    14. Franses, Philip Hans & Legerstee, Rianne, 2009. "Properties of expert adjustments on model-based SKU-level forecasts," International Journal of Forecasting, Elsevier, vol. 25(1), pages 35-47.
    15. MICHAEL McALEER, 1992. "Efficient Estimation: The Rao‐Zyskind Condition, Kruskal's Theorem and Ordinary Least Squares," The Economic Record, The Economic Society of Australia, vol. 68(1), pages 65-72, March.
    16. Oxley, Les & McAleer, Michael, 1993. "Econometric Issues in Macroeconomic Models with Generated Regressors," Journal of Economic Surveys, Wiley Blackwell, vol. 7(1), pages 1-40.
    17. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-247, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Chia-Lin & de Bruijn, Bert & Franses, Philip Hans & McAleer, Michael, 2013. "Analyzing fixed-event forecast revisions," International Journal of Forecasting, Elsevier, vol. 29(4), pages 622-627.
    2. Xie, Zixiong & Hsu, Shih-Hsun, 2016. "Time varying biases and the state of the economy," International Journal of Forecasting, Elsevier, vol. 32(3), pages 716-725.
    3. Chang, C-L. & McAleer, M.J. & Franses, Ph.H.B.F., 2010. "Combining Non-Replicable Forecasts," Econometric Institute Research Papers EI 2010-44, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    4. Chia-Lin Chang & Philip Hans Franses & Michael McAleer, 2010. "Evaluating Combined Non-Replicable Forecasts," Working Papers in Economics 10/74, University of Canterbury, Department of Economics and Finance.
    5. Chang, Chia-Lin & Franses, Philip Hans & McAleer, Michael, 2013. "Are forecast updates progressive?," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 9-18.
    6. Jeffrey Frankel, 2013. "A Solution to Fiscal Procyclicality: The Structural Budget Institutions Pioneered by Chile," Central Banking, Analysis, and Economic Policies Book Series, in: Luis Felipe Céspedes & Jordi Galí (ed.),Fiscal Policy and Macroeconomic Performance, edition 1, volume 17, chapter 9, pages 323-391, Central Bank of Chile.
    7. Franses, Ph.H.B.F. & McAleer, M.J. & Legerstee, R., 2010. "Evaluating Macroeconomic Forecast: A Review of Some Recent Developments," Econometric Institute Research Papers EI 2010-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    8. Chang, Chia Lin & Franses, Philip Hans & Mcaleer, Michael, 2012. "Evaluating Individual and Mean Non-Replicable Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(3), pages 22-43, September.
    9. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2014. "Evaluating Macroeconomic Forecasts: A Concise Review Of Some Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 195-208, April.
    10. Frankel, Jeffrey, 2011. "A Solution to Overoptimistic Forecasts and Fiscal Procyclicality: The Structural Budget Institutions Pioneered by Chile," Working Paper Series 11-012, Harvard University, John F. Kennedy School of Government.
    11. Mihaela Simionescu, 2014. "Directional accuracy for inflation and unemployment rate predictions in Romania," International Journal of Business and Economic Sciences Applied Research (IJBESAR), International Hellenic University (IHU), Kavala Campus, Greece (formerly Eastern Macedonia and Thrace Institute of Technology - EMaTTech), vol. 7(2), pages 129-138, September.
    12. Chang, Chun-Ping & Lee, Chien-Chiang & Hsieh, Meng-Chi, 2015. "Does globalization promote real output? Evidence from quantile cointegration regression," Economic Modelling, Elsevier, vol. 44(C), pages 25-36.
    13. Sun, Yuying & Wang, Shouyang & Zhang, Xun, 2018. "How efficient are China's macroeconomic forecasts? Evidences from a new forecasting evaluation approach," Economic Modelling, Elsevier, vol. 68(C), pages 506-513.
    14. Jordan, Steven J. & Vivian, Andrew & Wohar, Mark E., 2017. "Forecasting market returns: bagging or combining?," International Journal of Forecasting, Elsevier, vol. 33(1), pages 102-120.
    15. Alexander HARIN, 2014. "Partially Unforeseen Events. Corrections and Correcting Formulae for Forecasts," Expert Journal of Economics, Sprint Investify, vol. 2(2), pages 69-79.
    16. Harin, Alexander, 2014. "General correcting formulae for forecasts," MPRA Paper 55283, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2009. "Expert opinion versus expertise in forecasting," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 63(3), pages 334-346, August.
    2. Chang, C-L. & Franses, Ph.H.B.F. & McAleer, M.J., 2009. "How Accurate are Government Forecast of Economic Fundamentals?," Econometric Institute Research Papers EI 2009-09, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    3. Chang, Chia-Lin & Franses, Philip Hans & McAleer, Michael, 2013. "Are forecast updates progressive?," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 9-18.
    4. Chia-Lin Chang & Philip Hans Franses & Michael McAleer, 2010. "Combining Non-Replicable Forecasts," Working Papers in Economics 10/35, University of Canterbury, Department of Economics and Finance.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Philip Hans Franses & Michael McAleer & Rianne Legerstee, 2014. "Evaluating Macroeconomic Forecasts: A Concise Review Of Some Recent Developments," Journal of Economic Surveys, Wiley Blackwell, vol. 28(2), pages 195-208, April.
    7. Franses, Philip Hans, 2013. "Improving judgmental adjustment of model-based forecasts," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 93(C), pages 1-8.
    8. Franses, Ph.H.B.F. & McAleer, M.J. & Legerstee, R., 2010. "Evaluating Macroeconomic Forecast: A Review of Some Recent Developments," Econometric Institute Research Papers EI 2010-19, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    9. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    10. Franses, Ph.H.B.F., 2009. "Forecasting Sales," Econometric Institute Research Papers EI 2009-29, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    11. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    12. Legerstee, R. & Franses, Ph.H.B.F. & Paap, R., 2011. "Do experts incorporate statistical model forecasts and should they?," Econometric Institute Research Papers EI2011-32, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    13. Rianne Legerstee & Philip Hans Franses, 2014. "Do Experts’ SKU Forecasts Improve after Feedback?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 69-79, January.
    14. Franses, Philip Hans & Kranendonk, Henk C. & Lanser, Debby, 2011. "One model and various experts: Evaluating Dutch macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 482-495.
    15. Kontogeorgos, Georgios & Lambrias, Kyriacos, 2019. "An analysis of the Eurosystem/ECB projections," Working Paper Series 2291, European Central Bank.
    16. Petropoulos, Fotios & Fildes, Robert & Goodwin, Paul, 2016. "Do ‘big losses’ in judgmental adjustments to statistical forecasts affect experts’ behaviour?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 842-852.
    17. Komunjer, Ivana, 2013. "Quantile Prediction," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 961-994, Elsevier.
    18. Bert de Bruijn & Philip Hans Franses, 2012. "Managing Sales Forecasters," Tinbergen Institute Discussion Papers 12-131/III, Tinbergen Institute.
    19. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    20. Barbara Rossi, 2013. "Exchange Rate Predictability," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.

    More about this item

    Keywords

    Government forecasts; generated regressors; replicable government forecasts; non- replicable government forecasts; initial forecasts; revised forecasts;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • E27 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Forecasting and Simulation: Models and Applications
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kyo:wpaper:720. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Makoto Watanabe (email available below). General contact details of provider: https://edirc.repec.org/data/iekyojp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.