IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v97y2006i4p946-984.html
   My bibliography  Save this article

Consistent variable selection in large panels when factors are observable

Author

Listed:
  • Ouysse, Rachida

Abstract

In this paper we develop an econometric method for consistent variable selection in the context of a linear factor model with observable factors for panels of large dimensions. The subset of factors that best fit the data is sequentially determined. Firstly, a partial R2 rule is used to show the existence of an optimal ordering of the candidate variables. Secondly, We show that for a given order of the regressors, the number of factors can be consistently estimated using the Bayes information criterion. The Akaike will asymptotically lead to overfitting of the model. The theory is established under approximate factor structure which allows for limited cross-section and serial dependence in the idiosyncratic term. Simulations show that the proposed two-step selection technique has good finite sample properties. The likelihood of selecting the correct specification increases with the number of cross-sections both asymptotically and in small samples. Moreover, the proposed variable selection method is computationally attractive. For K potential candidate factors, the search requires only 2K regressions compared to 2K for an exhaustive search.

Suggested Citation

  • Ouysse, Rachida, 2006. "Consistent variable selection in large panels when factors are observable," Journal of Multivariate Analysis, Elsevier, vol. 97(4), pages 946-984, April.
  • Handle: RePEc:eee:jmvana:v:97:y:2006:i:4:p:946-984
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047-259X(05)00119-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. Geweke, John & Meese, Richard, 1981. "Estimating regression models of finite but unknown order," Journal of Econometrics, Elsevier, vol. 16(1), pages 162-162, May.
    3. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    4. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    5. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    6. Lo, Andrew W & MacKinlay, A Craig, 1990. "Data-Snooping Biases in Tests of Financial Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 3(3), pages 431-467.
    7. Jan R. Magnus & Dmitry Danilov, 2004. "Forecast accuracy after pretesting with an application to the stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 251-274.
    8. Jorion, Philippe, 1991. "The Pricing of Exchange Rate Risk in the Stock Market," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(3), pages 363-376, September.
    9. Foster, F Douglas & Smith, Tom & Whaley, Robert E, 1997. "Assessing Goodness-of-Fit of Asset Pricing Models: The Distribution of the Maximal R-Squared," Journal of Finance, American Finance Association, vol. 52(2), pages 591-607, June.
    10. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    11. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rachida Ouysse, 2011. "Comparison of Bayesian moving Average and Principal Component Forecast for Large Dimensional Factor Models," Discussion Papers 2012-03, School of Economics, The University of New South Wales.
    2. Robert Kohn & Rachida Ouysse, 2007. "Bayesian Variable Selection of Risk Factors in the APT Model," Discussion Papers 2007-32, School of Economics, The University of New South Wales.
    3. Ouysse, Rachida & Kohn, Robert, 2010. "Bayesian variable selection and model averaging in the arbitrage pricing theory model," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3249-3268, December.
    4. Wu, Fan & Wang, Guan-jun & Kong, Xin-bing, 2022. "Inference on common intraday periodicity at high frequencies," Statistics & Probability Letters, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan R. Magnus & Dmitry Danilov, 2004. "Forecast accuracy after pretesting with an application to the stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(4), pages 251-274.
    2. Fernando Rubio, 2005. "Eficiencia De Mercado, Administracion De Carteras De Fondos Y Behavioural Finance," Finance 0503028, University Library of Munich, Germany, revised 23 Jul 2005.
    3. Zura Kakushadze, 2015. "Heterotic Risk Models," Papers 1508.04883, arXiv.org, revised Jan 2016.
    4. Gregory Connor & Lisa R. Goldberg & Robert A. Korajczyk, 2010. "Portfolio Risk Analysis," Economics Books, Princeton University Press, edition 1, number 9224.
    5. Zura Kakushadze & Willie Yu, 2016. "Statistical Risk Models," Papers 1602.08070, arXiv.org, revised Jan 2017.
    6. Oleg Rytchkov & Xun Zhong, 2020. "Information Aggregation and P-Hacking," Management Science, INFORMS, vol. 66(4), pages 1605-1626, April.
    7. Zura Kakushadze & Willie Yu, 2016. "Multifactor Risk Models and Heterotic CAPM," Papers 1602.04902, arXiv.org, revised Mar 2016.
    8. Michael Cooper & Huseyin Gulen, 2006. "Is Time-Series-Based Predictability Evident in Real Time?," The Journal of Business, University of Chicago Press, vol. 79(3), pages 1263-1292, May.
    9. Chen, Liang, 2012. "Identifying observed factors in approximate factor models: estimation and hypothesis testing," MPRA Paper 37514, University Library of Munich, Germany.
    10. Cooper, Michael J. & Gubellini, Stefano, 2011. "The critical role of conditioning information in determining if value is really riskier than growth," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 289-305, March.
    11. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    12. Tomohiro Ando & Jushan Bai, 2016. "Panel Data Models with Grouped Factor Structure Under Unknown Group Membership," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 163-191, January.
    13. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    14. Chinco, Alex & Neuhierl, Andreas & Weber, Michael, 2021. "Estimating the anomaly base rate," Journal of Financial Economics, Elsevier, vol. 140(1), pages 101-126.
    15. Simin, Timothy, 2008. "The Poor Predictive Performance of Asset Pricing Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(2), pages 355-380, June.
    16. Bai, Jushan & Ng, Serena, 2006. "Evaluating latent and observed factors in macroeconomics and finance," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 507-537.
    17. Lo, Andrew W. & Mackinlay, A. Craig, 1997. "Maximizing Predictability In The Stock And Bond Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 1(1), pages 102-134, January.
    18. Enoch Cheng & Clemens C. Struck, 2019. "Time-Series Momentum: A Monte-Carlo Approach," Working Papers 201906, School of Economics, University College Dublin.
    19. Ferson, Wayne E. & Sarkissian, Sergei & Simin, Timothy, 2008. "Asset Pricing Models with Conditional Betas and Alphas: The Effects of Data Snooping and Spurious Regression," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(2), pages 331-353, June.
    20. Ouysse, Rachida & Kohn, Robert, 2010. "Bayesian variable selection and model averaging in the arbitrage pricing theory model," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3249-3268, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:97:y:2006:i:4:p:946-984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.