IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v553y2020ics0378437120300595.html
   My bibliography  Save this article

Persistence of averages in financial Markov Switching models: A large deviations approach

Author

Listed:
  • Stutzer, Michael

Abstract

The behavior of time averages, or functions of them, is important in quantitative research. Over an investment horizon, both the time-averaged number of loan defaults and the time-averaged log gross returns from securities investment, a.k.a. the continuously compounded cumulative rate of return (CROR), are important random variables affecting the performance of loan and securities portfolios, respectively. In ergodic models, the randomness in such averages is eliminated only asymptotically. The statistical theory of Large Deviations provides simply computed and useful tools for analyzing this persistence, and is developed and applied to Markov Switching models of loan defaults and securities portfolio choice.

Suggested Citation

  • Stutzer, Michael, 2020. "Persistence of averages in financial Markov Switching models: A large deviations approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
  • Handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s0378437120300595
    DOI: 10.1016/j.physa.2020.124237
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120300595
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Williams, Noah, 2004. "Small noise asymptotics for a stochastic growth model," Journal of Economic Theory, Elsevier, vol. 119(2), pages 271-298, December.
    2. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    3. Didier Sornette, 1998. "Large deviations and portfolio optimization," Papers cond-mat/9802059, arXiv.org, revised Jun 1998.
    4. Lars Peter Hansen & José A. Scheinkman, 2009. "Long-Term Risk: An Operator Approach," Econometrica, Econometric Society, vol. 77(1), pages 177-234, January.
    5. Amir Dembo & Jean-Dominique Deuschel & Darrell Duffie, 2004. "Large portfolio losses," Finance and Stochastics, Springer, vol. 8(1), pages 3-16, January.
    6. Pyle, David H & Turnovsky, Stephen J, 1970. "Safety-First and Expected Utility Maximization in Mean-Standard Deviation Portfolio Analysis," The Review of Economics and Statistics, MIT Press, vol. 52(1), pages 75-81, February.
    7. Sornette, Didier, 1998. "Large deviations and portfolio optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 256(1), pages 251-283.
    8. Kitamura, Yuichi & Stutzer, Michael, 2002. "Connections between entropic and linear projections in asset pricing estimation," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 159-174, March.
    9. Lars Peter Hansen & Jose A. Scheinkman, 2012. "Recursive utility in a Markov environment with stochastic growth," Working Papers 1380, Princeton University, Department of Economics, Econometric Research Program..
    10. Duffy, Ken & Lobunets, Olena & Suhov, Yuri, 2007. "Loss aversion, large deviation preferences and optimal portfolio weights for some classes of return processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 408-422.
    11. Touchette, Hugo, 2018. "Introduction to dynamical large deviations of Markov processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 504(C), pages 5-19.
    12. Stutzer, Michael, 2013. "Optimal hedging via large deviation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3177-3182.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramírez-Cobo, Pepa & Carrizosa, Emilio & Lillo, Rosa E., 2021. "Analysis of an aggregate loss model in a Markov renewal regime," Applied Mathematics and Computation, Elsevier, vol. 396(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stutzer, Michael, 2013. "Optimal hedging via large deviation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3177-3182.
    2. Huyen Pham, 2007. "Some applications and methods of large deviations in finance and insurance," Papers math/0702473, arXiv.org, revised Feb 2007.
    3. Christensen, Timothy M., 2022. "Existence and uniqueness of recursive utilities without boundedness," Journal of Economic Theory, Elsevier, vol. 200(C).
    4. Timothy M. Christensen, 2020. "Existence and uniqueness of recursive utilities without boundedness," Papers 2008.00963, arXiv.org, revised Aug 2021.
    5. Richard B. Sowers, 2009. "Exact Pricing Asymptotics of Investment-Grade Tranches of Synthetic CDO's Part I: A Large Homogeneous Pool," Papers 0903.4475, arXiv.org.
    6. Govindaraj, Suresh, 2005. "Hypothesis testing for diffusion processes with continuous observations: Direct computation of large deviation results for error probabilities," Finance Research Letters, Elsevier, vol. 2(4), pages 234-247, December.
    7. Stachurski, John & Wilms, Ole & Zhang, Junnan, 2024. "Asset pricing with time preference shocks: Existence and uniqueness," Journal of Economic Theory, Elsevier, vol. 216(C).
    8. J. V. Andersen & D. Sornette, 1999. "Have your cake and eat it too: increasing returns while lowering large risks!," Papers cond-mat/9907217, arXiv.org.
    9. Dalderop, Jeroen, 2023. "Semiparametric estimation of latent variable asset pricing models," Journal of Econometrics, Elsevier, vol. 236(1).
    10. Hansen, Lars Peter, 2013. "Risk Pricing over Alternative Investment Horizons," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1571-1611, Elsevier.
    11. Jaroslav Borovička & John Stachurski, 2020. "Necessary and Sufficient Conditions for Existence and Uniqueness of Recursive Utilities," Journal of Finance, American Finance Association, vol. 75(3), pages 1457-1493, June.
    12. Zhang, Qunzhi & Sornette, Didier & Balcilar, Mehmet & Gupta, Rangan & Ozdemir, Zeynel Abidin & Yetkiner, Hakan, 2016. "LPPLS bubble indicators over two centuries of the S&P 500 index," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 126-139.
    13. Cornelis A Los, 2005. "Why VaR FailsLong Memory and Extreme Events in Financial Markets," The IUP Journal of Financial Economics, IUP Publications, vol. 0(3), pages 19-36, September.
    14. Y. Malevergne & D. Sornette, 2003. "VaR-Efficient Portfolios for a Class of Super- and Sub-Exponentially Decaying Assets Return Distributions," Papers physics/0301009, arXiv.org.
    15. Youngha Cho & Soosung Hwang & Steve Satchell, 2012. "The Optimal Mortgage Loan Portfolio in UK Regional Residential Real Estate," The Journal of Real Estate Finance and Economics, Springer, vol. 45(3), pages 645-677, October.
    16. Y. Malevergne & D. Sornette, 2001. "General framework for a portfolio theory with non-Gaussian risks and non-linear correlations," Papers cond-mat/0103020, arXiv.org.
    17. Timothy M. Christensen, 2014. "Nonparametric identification of positive eigenfunctions," CeMMAP working papers CWP37/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. D. Sornette & P. Simonetti & J.V. Andersen, 1999. ""Nonlinear" covariance matrix and portfolio theory for non-Gaussian multivariate distributions," Finance 9902004, University Library of Munich, Germany.
    19. Bansal, Ravi & Kiku, Dana & Yaron, Amir, 2016. "Risks for the long run: Estimation with time aggregation," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 52-69.
    20. Borovička, Jaroslav & Hansen, Lars Peter, 2014. "Examining macroeconomic models through the lens of asset pricing," Journal of Econometrics, Elsevier, vol. 183(1), pages 67-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:553:y:2020:i:c:s0378437120300595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.