IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v310y2023i1p415-431.html
   My bibliography  Save this article

Loss function-based change point detection in risk measures

Author

Listed:
  • Lazar, Emese
  • Wang, Shixuan
  • Xue, Xiaohan

Abstract

We propose a new test to detect change points in financial risk measures, based on the cumulative sum (CUSUM) procedure applied to the Wilcoxon statistic within a popular class of loss functions for risk measures. The proposed test efficiently captures change points jointly in two risk measure series: Value-at-Risk (VaR) and Expected Shortfall (ES), estimated by (semi)parametric models. We derive the asymptotic distribution of the proposed statistic and adopt a stationary bootstrapping technique to obtain the p-values of the test statistic. Monte Carlo simulation results show that our proposed test has better size control and higher power than the alternative tests under various change point scenarios. An empirical study of risk measures based on the S&P 500 index illustrates that our proposed test is able to detect change points that are consistent with well-known market events.

Suggested Citation

  • Lazar, Emese & Wang, Shixuan & Xue, Xiaohan, 2023. "Loss function-based change point detection in risk measures," European Journal of Operational Research, Elsevier, vol. 310(1), pages 415-431.
  • Handle: RePEc:eee:ejores:v:310:y:2023:i:1:p:415-431
    DOI: 10.1016/j.ejor.2023.03.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723002576
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.03.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Natalia Nolde & Johanna F. Ziegel, 2016. "Elicitability and backtesting: Perspectives for banking regulation," Papers 1608.05498, arXiv.org, revised Feb 2017.
    2. Dimitriadis, Timo & Schnaitmann, Julie, 2021. "Forecast encompassing tests for the expected shortfall," International Journal of Forecasting, Elsevier, vol. 37(2), pages 604-621.
    3. Gerlach, Richard & Wang, Chao, 2020. "Semi-parametric dynamic asymmetric Laplace models for tail risk forecasting, incorporating realized measures," International Journal of Forecasting, Elsevier, vol. 36(2), pages 489-506.
    4. Horváth, Lajos & Liu, Zhenya & Rice, Gregory & Wang, Shixuan, 2020. "Sequential monitoring for changes from stationarity to mild non-stationarity," Journal of Econometrics, Elsevier, vol. 215(1), pages 209-238.
    5. Marco Barassi & Lajos Horváth & Yuqian Zhao, 2020. "Change‐Point Detection in the Conditional Correlation Structure of Multivariate Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 340-349, April.
    6. Horváth, Lajos & Liu, Zhenya & Lu, Shanglin, 2022. "Sequential Monitoring Of Changes In Dynamic Linear Models, Applied To The U.S. Housing Market," Econometric Theory, Cambridge University Press, vol. 38(2), pages 209-272, April.
    7. Leung, Melvern & Li, Youwei & Pantelous, Athanasios A. & Vigne, Samuel A., 2021. "Bayesian Value-at-Risk backtesting: The case of annuity pricing," European Journal of Operational Research, Elsevier, vol. 293(2), pages 786-801.
    8. Ľluboš Pástor & Robert F. Stambaugh, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    9. Francq, Christian & Zakoïan, Jean-Michel, 2015. "Risk-parameter estimation in volatility models," Journal of Econometrics, Elsevier, vol. 184(1), pages 158-173.
    10. Alexander Aue & Lajos Horváth, 2013. "Structural breaks in time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 34(1), pages 1-16, January.
    11. Elena Andreou & Eric Ghysels, 2002. "Detecting multiple breaks in financial market volatility dynamics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 579-600.
    12. Herold Dehling & Aeneas Rooch & Murad S. Taqqu, 2013. "Non-Parametric Change-Point Tests for Long-Range Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 153-173, March.
    13. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Journal of Finance, American Finance Association, vol. 75(5), pages 2503-2553, October.
    14. Bonaccolto, Giovanni & Caporin, Massimiliano & Maillet, Bertrand B., 2022. "Dynamic large financial networks via conditional expected shortfalls," European Journal of Operational Research, Elsevier, vol. 298(1), pages 322-336.
    15. Carina Gerstenberger, 2018. "Robust Wilcoxon†Type Estimation of Change†Point Location Under Short†Range Dependence," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(1), pages 90-104, January.
    16. Sander Barendse & Andrew J. Patton, 2022. "Comparing Predictive Accuracy in the Presence of a Loss Function Shape Parameter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(3), pages 1057-1069, June.
    17. Ting Zhang & Liliya Lavitas, 2018. "Unsupervised Self-Normalized Change-Point Testing for Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 637-648, April.
    18. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    19. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    20. Yannick Hoga, 2017. "Testing for changes in (extreme) VaR," Econometrics Journal, Royal Economic Society, vol. 20(1), pages 23-51, February.
    21. Holger Dette & Josua Gösmann, 2020. "A Likelihood Ratio Approach to Sequential Change Point Detection for a General Class of Parameters," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(531), pages 1361-1377, July.
    22. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    23. Chen, Bin & Hong, Yongmiao, 2016. "Detecting For Smooth Structural Changes In Garch Models," Econometric Theory, Cambridge University Press, vol. 32(3), pages 740-791, June.
    24. Andrew J. Patton, 2020. "Comparing Possibly Misspecified Forecasts," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 796-809, October.
    25. Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
    26. Meng, Xiaochun & Taylor, James W., 2020. "Estimating Value-at-Risk and Expected Shortfall using the intraday low and range data," European Journal of Operational Research, Elsevier, vol. 280(1), pages 191-202.
    27. Dimitris Politis & Halbert White, 2004. "Automatic Block-Length Selection for the Dependent Bootstrap," Econometric Reviews, Taylor & Francis Journals, vol. 23(1), pages 53-70.
    28. Paul Fearnhead & Guillem Rigaill, 2019. "Changepoint Detection in the Presence of Outliers," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(525), pages 169-183, January.
    29. James W. Taylor, 2019. "Forecasting Value at Risk and Expected Shortfall Using a Semiparametric Approach Based on the Asymmetric Laplace Distribution," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 121-133, January.
    30. E. Andersson & D. Bock & M. Frisen, 2006. "Some statistical aspects of methods for detection of turning points in business cycles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(3), pages 257-278.
    31. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    32. Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
    33. Annika Betken, 2016. "Testing for Change-Points in Long-Range Dependent Time Series by Means of a Self-Normalized Wilcoxon Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 785-809, November.
    34. de Jong, Robert M. & Davidson, James, 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I," Econometric Theory, Cambridge University Press, vol. 16(5), pages 621-642, October.
    35. Qihui Chen & Zheng Fang, 2019. "Improved inference on the rank of a matrix," Quantitative Economics, Econometric Society, vol. 10(4), pages 1787-1824, November.
    36. Rogier Quaedvlieg, 2021. "Multi-Horizon Forecast Comparison," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(1), pages 40-53, January.
    37. Ye, Wuyi & Liu, Xiaoquan & Miao, Baiqi, 2012. "Measuring the subprime crisis contagion: Evidence of change point analysis of copula functions," European Journal of Operational Research, Elsevier, vol. 222(1), pages 96-103.
    38. Berkes, István & Gombay, Edit & Horváth, Lajos & Kokoszka, Piotr, 2004. "SEQUENTIAL CHANGE-POINT DETECTION IN GARCH(p,q) MODELS," Econometric Theory, Cambridge University Press, vol. 20(6), pages 1140-1167, December.
    39. Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
    40. Campbell R. Harvey & Yan Liu, 2020. "False (and Missed) Discoveries in Financial Economics," Papers 2006.04269, arXiv.org.
    41. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    42. Marie Hušková & Claudia Kirch, 2008. "Bootstrapping confidence intervals for the change‐point of time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(6), pages 947-972, November.
    43. Turan Bali & Panayiotis Theodossiou, 2007. "A conditional-SGT-VaR approach with alternative GARCH models," Annals of Operations Research, Springer, vol. 151(1), pages 241-267, April.
    44. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    45. Ji, Qiang & Zhang, Dayong & Zhao, Yuqian, 2020. "Searching for safe-haven assets during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 71(C).
    46. Calhoun, Gray, 2018. "Block Bootstrap Consistency Under Weak Assumptions," Econometric Theory, Cambridge University Press, vol. 34(6), pages 1383-1406, December.
    47. Shao, Xiaofeng & Zhang, Xianyang, 2010. "Testing for Change Points in Time Series," Journal of the American Statistical Association, American Statistical Association, vol. 105(491), pages 1228-1240.
    48. Berkes, István & Horváth, Lajos & Kokoszka, Piotr, 2003. "Estimation Of The Maximal Moment Exponent Of A Garch(1,1) Sequence," Econometric Theory, Cambridge University Press, vol. 19(4), pages 565-586, August.
    49. Lazar, Emese & Xue, Xiaohan, 2020. "Forecasting risk measures using intraday data in a generalized autoregressive score framework," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1057-1072.
    50. Clements, Michael P & Hendry, David F, 1996. "Intercept Corrections and Structural Change," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(5), pages 475-494, Sept.-Oct.
    51. Lajos Horváth & Curtis Miller & Gregory Rice, 2020. "A New Class of Change Point Test Statistics of Rényi Type," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(3), pages 570-579, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Cathy W.S. & Hsu, Hsiao-Yun & Watanabe, Toshiaki, 2023. "Tail risk forecasting of realized volatility CAViaR models," Finance Research Letters, Elsevier, vol. 51(C).
    2. Cho, Haeran & Korkas, Karolos K., 2022. "High-dimensional GARCH process segmentation with an application to Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 23(C), pages 187-203.
    3. Timo Dimitriadis & Tobias Fissler & Johanna Ziegel, 2020. "The Efficiency Gap," Papers 2010.14146, arXiv.org, revised Sep 2022.
    4. Cathy W. S. Chen & Takaaki Koike & Wei-Hsuan Shau, 2024. "Tail risk forecasting with semi-parametric regression models by incorporating overnight information," Papers 2402.07134, arXiv.org.
    5. Lee, Sangyeol & Meintanis, Simos G. & Pretorius, Charl, 2022. "Monitoring procedures for strict stationarity based on the multivariate characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Cathy W. S. Chen & Takaaki Koike & Wei‐Hsuan Shau, 2024. "Tail risk forecasting with semiparametric regression models by incorporating overnight information," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1492-1512, August.
    7. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    8. Alessandra Amendola & Vincenzo Candila & Antonio Naimoli & Giuseppe Storti, 2024. "Adaptive combinations of tail-risk forecasts," Papers 2406.06235, arXiv.org.
    9. Qiu, Zhiguo & Lazar, Emese & Nakata, Keiichi, 2024. "VaR and ES forecasting via recurrent neural network-based stateful models," International Review of Financial Analysis, Elsevier, vol. 92(C).
    10. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    11. Vincenzo Candila & Giampiero M. Gallo & Lea Petrella, 2020. "Mixed--frequency quantile regressions to forecast Value--at--Risk and Expected Shortfall," Papers 2011.00552, arXiv.org, revised Mar 2023.
    12. Patton, Andrew J. & Ziegel, Johanna F. & Chen, Rui, 2019. "Dynamic semiparametric models for expected shortfall (and Value-at-Risk)," Journal of Econometrics, Elsevier, vol. 211(2), pages 388-413.
    13. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    14. Lazar, Emese & Pan, Jingqi & Wang, Shixuan, 2024. "On the estimation of Value-at-Risk and Expected Shortfall at extreme levels," Journal of Commodity Markets, Elsevier, vol. 34(C).
    15. Qifa Xu & Lu Chen & Cuixia Jiang & Yezheng Liu, 2022. "Forecasting expected shortfall and value at risk with a joint elicitable mixed data sampling model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(3), pages 407-421, April.
    16. Timo Dimitriadis & Xiaochun Liu & Julie Schnaitmann, 2020. "Encompassing Tests for Value at Risk and Expected Shortfall Multi-Step Forecasts based on Inference on the Boundary," Papers 2009.07341, arXiv.org.
    17. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    18. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    19. Yannick Hoga & Matei Demetrescu, 2023. "Monitoring Value-at-Risk and Expected Shortfall Forecasts," Management Science, INFORMS, vol. 69(5), pages 2954-2971, May.
    20. Tobias Fissler & Yannick Hoga, 2021. "Backtesting Systemic Risk Forecasts using Multi-Objective Elicitability," Papers 2104.10673, arXiv.org, revised Feb 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:310:y:2023:i:1:p:415-431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.