Generative adversarial networks for financial trading strategies fine-tuning and combination
Author
Abstract
Suggested Citation
DOI: 10.1080/14697688.2020.1790635
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2019. "Generative Adversarial Networks for Financial Trading Strategies Fine-Tuning and Combination," Papers 1901.01751, arXiv.org, revised Mar 2019.
References listed on IDEAS
- Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
- Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Eling, Martin & Schuhmacher, Frank, 2007. "Does the choice of performance measure influence the evaluation of hedge funds?," Journal of Banking & Finance, Elsevier, vol. 31(9), pages 2632-2647, September.
- Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
- R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
- Romano, Joseph P. & Wolf, Michael, 2016.
"Efficient computation of adjusted p-values for resampling-based stepdown multiple testing,"
Statistics & Probability Letters, Elsevier, vol. 113(C), pages 38-40.
- Joseph P. Romano & Michael Wolf, 2016. "Efficient computation of adjusted p-values for resampling-based stepdown multiple testing," ECON - Working Papers 219, Department of Economics - University of Zurich.
- Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Adriano Koshiyama & Sebastian Flennerhag & Stefano B. Blumberg & Nick Firoozye & Philip Treleaven, 2020. "QuantNet: Transferring Learning Across Systematic Trading Strategies," Papers 2004.03445, arXiv.org, revised Jun 2020.
- Szymon Kubiak & Tillman Weyde & Oleksandr Galkin & Dan Philps & Ram Gopal, 2023. "Improved Data Generation for Enhanced Asset Allocation: A Synthetic Dataset Approach for the Fixed Income Universe," Papers 2311.16004, arXiv.org.
- repec:hal:wpaper:hal-03716692 is not listed on IDEAS
- Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2019. "Quant GANs: Deep Generation of Financial Time Series," Papers 1907.06673, arXiv.org, revised Dec 2019.
- Chung I Lu & Julian Sester, 2024. "Generative model for financial time series trained with MMD using a signature kernel," Papers 2407.19848, arXiv.org, revised Jul 2024.
- Francesca Biagini & Lukas Gonon & Niklas Walter, 2024. "Universal randomised signatures for generative time series modelling," Papers 2406.10214, arXiv.org, revised Sep 2024.
- Xiaoyu Tan & Zili Zhang & Xuejun Zhao & Shuyi Wang, 2022. "DeepPricing: pricing convertible bonds based on financial time-series generative adversarial networks," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-38, December.
- Alexandre Miot, 2020. "Adversarial trading," Papers 2101.03128, arXiv.org.
- Matteo Rizzato & Julien Wallart & Christophe Geissler & Nicolas Morizet & Noureddine Boumlaik, 2022. "Generative Adversarial Networks Applied to Synthetic Financial Scenarios Generation," Papers 2209.03935, arXiv.org, revised May 2024.
- Gautier Marti & Victor Goubet & Frank Nielsen, 2021. "cCorrGAN: Conditional Correlation GAN for Learning Empirical Conditional Distributions in the Elliptope," Papers 2107.10606, arXiv.org.
- Gautier Marti, 2019. "CorrGAN: Sampling Realistic Financial Correlation Matrices Using Generative Adversarial Networks," Papers 1910.09504, arXiv.org, revised Dec 2019.
- Amine Assouel & Antoine Jacquier & Alexei Kondratyev, 2021. "A Quantum Generative Adversarial Network for distributions," Papers 2110.02742, arXiv.org.
- Rizzato, Matteo & Wallart, Julien & Geissler, Christophe & Morizet, Nicolas & Boumlaik, Noureddine, 2023. "Generative Adversarial Networks applied to synthetic financial scenarios generation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
- Song Wei & Andrea Coletta & Svitlana Vyetrenko & Tucker Balch, 2023. "INTAGS: Interactive Agent-Guided Simulation," Papers 2309.01784, arXiv.org, revised Nov 2023.
- Junyi Li & Xitong Wang & Yaoyang Lin & Arunesh Sinha & Micheal P. Wellman, 2020. "Generating Realistic Stock Market Order Streams," Papers 2006.04212, arXiv.org.
- Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
- Emiel Lemahieu & Kris Boudt & Maarten Wyns, 2023. "Generating drawdown-realistic financial price paths using path signatures," Papers 2309.04507, arXiv.org.
- Samuel N. Cohen & Christoph Reisinger & Sheng Wang, 2022. "Estimating risks of option books using neural-SDE market models," Papers 2202.07148, arXiv.org.
- Chung I Lu, 2023. "Evaluation of Deep Reinforcement Learning Algorithms for Portfolio Optimisation," Papers 2307.07694, arXiv.org, revised Jul 2023.
- Edmond Lezmi & Jules Roche & Thierry Roncalli & Jiali Xu, 2020. "Improving the Robustness of Trading Strategy Backtesting with Boltzmann Machines and Generative Adversarial Networks," Papers 2007.04838, arXiv.org.
- Samuel N. Cohen & Derek Snow & Lukasz Szpruch, 2021. "Black-box model risk in finance," Papers 2102.04757, arXiv.org.
- Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
- Carvajal-Patiño, Daniel & Ramos-Pollán, Raul, 2022. "Synthetic data generation with deep generative models to enhance predictive tasks in trading strategies," Research in International Business and Finance, Elsevier, vol. 62(C).
- Magnus Wiese & Lianjun Bai & Ben Wood & Hans Buehler, 2019. "Deep Hedging: Learning to Simulate Equity Option Markets," Papers 1911.01700, arXiv.org.
- Florian Eckerli & Joerg Osterrieder, 2021. "Generative Adversarial Networks in finance: an overview," Papers 2106.06364, arXiv.org, revised Jul 2021.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Fantazzini, Dean, 2020.
"Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
- Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," MPRA Paper 102315, University Library of Munich, Germany.
- Sebastian M. Blanc & Thomas Setzer, 2020. "Bias–Variance Trade-Off and Shrinkage of Weights in Forecast Combination," Management Science, INFORMS, vol. 66(12), pages 5720-5737, December.
- Vitor Azevedo & Georg Sebastian Kaiser & Sebastian Mueller, 2023. "Stock market anomalies and machine learning across the globe," Journal of Asset Management, Palgrave Macmillan, vol. 24(5), pages 419-441, September.
- Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
- Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Wei Qian & Craig A. Rolling & Gang Cheng & Yuhong Yang, 2019. "On the Forecast Combination Puzzle," Econometrics, MDPI, vol. 7(3), pages 1-26, September.
- Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
- Neil R. Ericsson, 2021. "Dynamic Econometrics in Action: A Biography of David F. Hendry," International Finance Discussion Papers 1311, Board of Governors of the Federal Reserve System (U.S.).
- Clements, Michael P. & Beatriz Galvao, Ana, 2010.
"Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions,"
Economic Research Papers
270771, University of Warwick - Department of Economics.
- Clements, Michael P. & Galvão, Ana Beatriz, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," The Warwick Economics Research Paper Series (TWERPS) 953, University of Warwick, Department of Economics.
- Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Mauro Costantini & Ulrich Gunter & Robert M. Kunst, 2017.
"Forecast Combinations in a DSGE‐VAR Lab,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(3), pages 305-324, April.
- Costantini, Mauro & Gunter, Ulrich & Kunst, Robert M., 2014. "Forecast combinations in a DSGE-VAR lab," Economics Series 309, Institute for Advanced Studies.
- Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Kock, Anders Bredahl & Teräsvirta, Timo, 2014.
"Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009," CREATES Research Papers 2011-28, Department of Economics and Business Economics, Aarhus University.
- Anand, Abhinav & Li, Tiantian & Kurosaki, Tetsuo & Kim, Young Shin, 2016. "Foster–Hart optimal portfolios," Journal of Banking & Finance, Elsevier, vol. 68(C), pages 117-130.
- Daniel Cunha Oliveira & Yutong Lu & Xi Lin & Mihai Cucuringu & Andre Fujita, 2024. "Causality-Inspired Models for Financial Time Series Forecasting," Papers 2408.09960, arXiv.org.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:21:y:2021:i:5:p:797-813. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.