IDEAS home Printed from https://ideas.repec.org/a/bla/eufman/v27y2021i1p147-186.html
   My bibliography  Save this article

Recovering the market risk premium from higher‐order moment risks

Author

Listed:
  • George Chalamandaris
  • Leonidas S. Rompolis

Abstract

We propose a consistent approach for the estimation of the market risk premium. As a first step, we define the broadest possible set of ex ante estimators from the viewpoint of a power utility optimiser holding the market portfolio. We then employ an evaluation framework to optimise the parametrisation of the methodology. We show that this theoretical framework can still produce reasonable market risk premium estimates, even when the representative agent is not a power utility optimiser. Our results show that the inclusion of higher‐order moment risk premia improves the accuracy of the method.

Suggested Citation

  • George Chalamandaris & Leonidas S. Rompolis, 2021. "Recovering the market risk premium from higher‐order moment risks," European Financial Management, European Financial Management Association, vol. 27(1), pages 147-186, January.
  • Handle: RePEc:bla:eufman:v:27:y:2021:i:1:p:147-186
    DOI: 10.1111/eufm.12287
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/eufm.12287
    Download Restriction: no

    File URL: https://libkey.io/10.1111/eufm.12287?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Schleicher, Christoph & Zaffaroni, Paolo, 2009. "Model averaging in risk management with an application to futures markets," Journal of Empirical Finance, Elsevier, vol. 16(2), pages 280-305, March.
    2. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    3. Fernando M. Duarte & Carlo Rosa, 2015. "The equity risk premium: a review of models," Economic Policy Review, Federal Reserve Bank of New York, issue 2, pages 39-57.
    4. Giovanni Barone Adesi & Robert F. Engle & Loriano Mancini, 2014. "A GARCH Option Pricing Model with Filtered Historical Simulation," Palgrave Macmillan Books, in: Giovanni Barone Adesi (ed.), Simulating Security Returns: A Filtered Historical Simulation Approach, chapter 4, pages 66-108, Palgrave Macmillan.
    5. Ralph S.J. Koijen & Stijn Van Nieuwerburgh, 2011. "Predictability of Returns and Cash Flows," Annual Review of Financial Economics, Annual Reviews, vol. 3(1), pages 467-491, December.
    6. John Y. Campbell, Robert J. Shiller, 1988. "The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors," The Review of Financial Studies, Society for Financial Studies, vol. 1(3), pages 195-228.
    7. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    8. Robin Greenwood & Andrei Shleifer, 2014. "Expectations of Returns and Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 27(3), pages 714-746.
    9. Ian Martin, 2017. "What is the Expected Return on the Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.
    10. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    11. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    12. Ľuboš Pástor & Meenakshi Sinha & Bhaskaran Swaminathan, 2008. "Estimating the Intertemporal Risk–Return Tradeoff Using the Implied Cost of Capital," Journal of Finance, American Finance Association, vol. 63(6), pages 2859-2897, December.
    13. Barberis, Nicholas & Greenwood, Robin & Jin, Lawrence & Shleifer, Andrei, 2015. "X-CAPM: An extrapolative capital asset pricing model," Journal of Financial Economics, Elsevier, vol. 115(1), pages 1-24.
    14. Alexandros Kostakis & Nikolaos Panigirtzoglou & George Skiadopoulos, 2011. "Market Timing with Option-Implied Distributions: A Forward-Looking Approach," Management Science, INFORMS, vol. 57(7), pages 1231-1249, July.
    15. Benjamin Golez, 2014. "Expected Returns and Dividend Growth Rates Implied by Derivative Markets," The Review of Financial Studies, Society for Financial Studies, vol. 27(3), pages 790-822.
    16. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    17. Mehra, Rajnish & Prescott, Edward C., 2003. "The equity premium in retrospect," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 14, pages 889-938, Elsevier.
    18. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    19. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    20. Leonidas S. Rompolis & Elias Tzavalis, 2010. "Risk Premium Effects On Implied Volatility Regressions," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(2), pages 125-151, June.
    21. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    22. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    23. John H. Cochrane, 2008. "The Dog That Did Not Bark: A Defense of Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1533-1575, July.
    24. repec:bla:jfinan:v:59:y:2004:i:1:p:407-446 is not listed on IDEAS
    25. Roman Kozhan & Anthony Neuberger & Paul Schneider, 2013. "The Skew Risk Premium in the Equity Index Market," The Review of Financial Studies, Society for Financial Studies, vol. 26(9), pages 2174-2203.
    26. Rompolis, Leonidas S. & Tzavalis, Elias, 2008. "Recovering Risk Neutral Densities from Option Prices: A New Approach," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 43(4), pages 1037-1053, December.
    27. Neumann, Michael & Skiadopoulos, George, 2013. "Predictable Dynamics in Higher-Order Risk-Neutral Moments: Evidence from the S&P 500 Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(3), pages 947-977, June.
    28. Hiroshi Sasaki, 2016. "The skewness risk premium in equilibrium and stock return predictability," Annals of Finance, Springer, vol. 12(1), pages 95-133, February.
    29. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    30. Jin-Chuan Duan & Weiqi Zhang, 2014. "Forward-Looking Market Risk Premium," Management Science, INFORMS, vol. 60(2), pages 521-538, February.
    31. Schneider, Paul, 2015. "Generalized risk premia," Journal of Financial Economics, Elsevier, vol. 116(3), pages 487-504.
    32. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    33. Pedro Santa-Clara & Shu Yan, 2010. "Crashes, Volatility, and the Equity Premium: Lessons from S&P 500 Options," The Review of Economics and Statistics, MIT Press, vol. 92(2), pages 435-451, May.
    34. Long Chen & Zhi Da & Xinlei Zhao, 2013. "What Drives Stock Price Movements?," The Review of Financial Studies, Society for Financial Studies, vol. 26(4), pages 841-876.
    35. Fair, Ray C, 1970. "The Estimation of Simultaneous Equation Models with Lagged Endogenous Variables and First Order Serially Correlated Errors," Econometrica, Econometric Society, vol. 38(3), pages 507-516, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    2. Felix Brinkmann & Olaf Korn, 2018. "Risk-adjusted option-implied moments," Review of Derivatives Research, Springer, vol. 21(2), pages 149-173, July.
    3. Renato Faccini & Eirini Konstantinidi & George Skiadopoulos & Sylvia Sarantopoulou-Chiourea, 2019. "A New Predictor of U.S. Real Economic Activity: The S&P 500 Option Implied Risk Aversion," Management Science, INFORMS, vol. 65(10), pages 4927-4949, October.
    4. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    5. Geert Bekaert & Eric C. Engstrom & Nancy R. Xu, 2022. "The Time Variation in Risk Appetite and Uncertainty," Management Science, INFORMS, vol. 68(6), pages 3975-4004, June.
    6. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    7. Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
    8. Brinkmann, Felix & Korn, Olaf, 2014. "Risk-adjusted option-implied moments," CFR Working Papers 14-07, University of Cologne, Centre for Financial Research (CFR).
    9. Leonidas S. Rompolis & Elias Tzavalis, 2010. "Risk Premium Effects On Implied Volatility Regressions," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 33(2), pages 125-151, June.
    10. Ricardo De La O & Sean Myers, 2021. "Subjective Cash Flow and Discount Rate Expectations," Journal of Finance, American Finance Association, vol. 76(3), pages 1339-1387, June.
    11. Lof, Matthijs & Nyberg, Henri, 2024. "Discount rates and cash flows: A local projection approach," Journal of Banking & Finance, Elsevier, vol. 162(C).
    12. Vladimir Zdorovenin & Jacques Pézier, 2011. "Does Information Content of Option Prices Add Value for Asset Allocation?," ICMA Centre Discussion Papers in Finance icma-dp2011-03, Henley Business School, University of Reading.
    13. Papantonis, Ioannis, 2016. "Volatility risk premium implications of GARCH option pricing models," Economic Modelling, Elsevier, vol. 58(C), pages 104-115.
    14. Ye Li & Chen Wang, 2023. "Valuation Duration of the Stock Market," Papers 2310.07110, arXiv.org.
    15. Maria Kyriacou & Jose Olmo & Marius Strittmatter, 2021. "Optimal portfolio allocation using option‐implied information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 266-285, February.
    16. Mete Kilic & Ivan Shaliastovich, 2019. "Good and Bad Variance Premia and Expected Returns," Management Science, INFORMS, vol. 67(6), pages 2522-2544, June.
    17. Kiss, Tamás & Mazur, Stepan & Nguyen, Hoang, 2022. "Predicting returns and dividend growth — The role of non-Gaussian innovations," Finance Research Letters, Elsevier, vol. 46(PA).
    18. Jin-Chuan Duan & Weiqi Zhang, 2014. "Forward-Looking Market Risk Premium," Management Science, INFORMS, vol. 60(2), pages 521-538, February.
    19. Yu, Deshui & Huang, Difang & Chen, Li & Li, Luyang, 2023. "Forecasting dividend growth: The role of adjusted earnings yield," Economic Modelling, Elsevier, vol. 120(C).
    20. Ian Martin, 2017. "What is the Expected Return on the Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 132(1), pages 367-433.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:eufman:v:27:y:2021:i:1:p:147-186. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/efmaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.