IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v556y2020ics0378437120303952.html
   My bibliography  Save this article

The (in)efficiency of NYMEX energy futures: A multifractal analysis

Author

Listed:
  • Fernandes, Leonardo H.S.
  • de Araújo, Fernando H.A.
  • Silva, Igor E.M.

Abstract

We performed a systematic analysis to investigate the multifractal properties and Efficient Market Hypothesis (EMH) in time series of volatility for NYMEX (New York Mercantile Exchange) energy futures using the Multifractal Detrended Fluctuations Analysis (MF-DFA). We studied the generalized Hurst exponent h(q) and the Rényi exponent τ(q) for each record and quantify their statistical properties which allowed us to observe separately the contributing small scale (primarily via the negative moments q) and the large scale (via the positive moments q). We also calculated the multifractal spectrum f(α) and used a fourth-degree polynomial regression fit to estimate the complexity parameters that describe the degree of multifractality of the underlying process. The results obtained from our fitting procedure show that the volatility time series of NYMEX energy futures display overall persistent behavior (α0>0.5), a higher degree of multifractality and the dominance of large fluctuations. In this sense, our empirical results related to (α0>0.5) categorically reject the EMH. Furthermore, our results presented that Crude oil (Light-Sweet, Cushing, Oklahoma), the No. 2 heating oil (New York Harbor) and Propane (Mont Belvieu, Texas) energy futures are highly concentrated with behavior more closely associated to oligopolistic market.

Suggested Citation

  • Fernandes, Leonardo H.S. & de Araújo, Fernando H.A. & Silva, Igor E.M., 2020. "The (in)efficiency of NYMEX energy futures: A multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 556(C).
  • Handle: RePEc:eee:phsmap:v:556:y:2020:i:c:s0378437120303952
    DOI: 10.1016/j.physa.2020.124783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437120303952
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2020.124783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bos, Martijn & Demirer, Riza & Gupta, Rangan & Tiwari, Aviral Kumar, 2018. "Oil returns and volatility: The role of mergers and acquisitions," Energy Economics, Elsevier, vol. 71(C), pages 62-69.
    2. Yang, Liansheng & Zhu, Yingming & Wang, Yudong, 2016. "Multifractal characterization of energy stocks in China: A multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 357-365.
    3. Xiong-Fei Jiang & Bo Zheng & Tian Qiu & Fei Ren, 2017. "Extreme-volatility dynamics in crude oil markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(2), pages 1-7, February.
    4. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2017. "The dynamic linkages between crude oil and natural gas markets," Energy Economics, Elsevier, vol. 62(C), pages 155-170.
    5. Stošić, Dusan & Stošić, Darko & Stošić, Tatijana & Eugene Stanley, H., 2015. "Multifractal properties of price change and volume change of stock market indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 428(C), pages 46-51.
    6. Lutz Kilian, 2014. "Oil Price Shocks: Causes and Consequences," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 133-154, October.
    7. Calvet, Laurent & Fisher, Adlai, 2001. "Forecasting multifractal volatility," Journal of Econometrics, Elsevier, vol. 105(1), pages 27-58, November.
    8. Hedi Arouri, Mohamed El & Khuong Nguyen, Duc, 2010. "Oil prices, stock markets and portfolio investment: Evidence from sector analysis in Europe over the last decade," Energy Policy, Elsevier, vol. 38(8), pages 4528-4539, August.
    9. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    10. Telesca, Luciano & Lapenna, Vincenzo & Macchiato, Maria, 2005. "Multifractal fluctuations in seismic interspike series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 629-640.
    11. Kantelhardt, Jan W. & Rybski, Diego & Zschiegner, Stephan A. & Braun, Peter & Koscielny-Bunde, Eva & Livina, Valerie & Havlin, Shlomo & Bunde, Armin, 2003. "Multifractality of river runoff and precipitation: comparison of fluctuation analysis and wavelet methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 330(1), pages 240-245.
    12. Zeyu Zheng & Zhi Qiao & Tetsuya Takaishi & H Eugene Stanley & Baowen Li, 2014. "Realized Volatility and Absolute Return Volatility: A Comparison Indicating Market Risk," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-10, July.
    13. Feng, Jiabao & Wang, Yudong & Yin, Libo, 2017. "Oil volatility risk and stock market volatility predictability: Evidence from G7 countries," Energy Economics, Elsevier, vol. 68(C), pages 240-254.
    14. Kristoufek, Ladislav & Vosvrda, Miloslav, 2014. "Commodity futures and market efficiency," Energy Economics, Elsevier, vol. 42(C), pages 50-57.
    15. Herrera, Rodrigo & Rodriguez, Alejandro & Pino, Gabriel, 2017. "Modeling and forecasting extreme commodity prices: A Markov-Switching based extreme value model," Energy Economics, Elsevier, vol. 63(C), pages 129-143.
    16. Mensi, Walid & Hammoudeh, Shawkat & Nguyen, Duc Khuong & Yoon, Seong-Min, 2014. "Dynamic spillovers among major energy and cereal commodity prices," Energy Economics, Elsevier, vol. 43(C), pages 225-243.
    17. Zhang, Xun & Yu, Lean & Wang, Shouyang & Lai, Kin Keung, 2009. "Estimating the impact of extreme events on crude oil price: An EMD-based event analysis method," Energy Economics, Elsevier, vol. 31(5), pages 768-778, September.
    18. Gu, Rongbao & Zhang, Bing, 2016. "Is efficiency of crude oil market affected by multifractality? Evidence from the WTI crude oil market," Energy Economics, Elsevier, vol. 53(C), pages 151-158.
    19. Herrera, Ana María & Lagalo, Latika Gupta & Wada, Tatsuma, 2015. "Asymmetries in the response of economic activity to oil price increases and decreases?," Journal of International Money and Finance, Elsevier, vol. 50(C), pages 108-133.
    20. Kristoufek, Ladislav & Vosvrda, Miloslav, 2016. "Gold, currencies and market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 449(C), pages 27-34.
    21. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    22. Lutz Kilian & Robert J. Vigfusson, 2017. "The Role of Oil Price Shocks in Causing U.S. Recessions," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(8), pages 1747-1776, December.
    23. Liu, Chang & Sun, Xiaolei & Chen, Jianming & Li, Jianping, 2016. "Statistical properties of country risk ratings under oil price volatility: Evidence from selected oil-exporting countries," Energy Policy, Elsevier, vol. 92(C), pages 234-245.
    24. Petre Caraiani, 2012. "Evidence of Multifractality from Emerging European Stock Markets," PLOS ONE, Public Library of Science, vol. 7(7), pages 1-9, July.
    25. He, Ling-Yun & Chen, Shu-Peng, 2011. "Multifractal Detrended Cross-Correlation Analysis of agricultural futures markets," Chaos, Solitons & Fractals, Elsevier, vol. 44(6), pages 355-361.
    26. Kang, Wensheng & Ratti, Ronald A. & Yoon, Kyung Hwan, 2015. "The impact of oil price shocks on the stock market return and volatility relationship," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 34(C), pages 41-54.
    27. Korhonen, Iikka & Ledyaeva, Svetlana, 2010. "Trade linkages and macroeconomic effects of the price of oil," Energy Economics, Elsevier, vol. 32(4), pages 848-856, July.
    28. Li, Daye & Nishimura, Yusaku & Men, Ming, 2016. "Why the long-term auto-correlation has not been eliminated by arbitragers: Evidences from NYMEX," Energy Economics, Elsevier, vol. 59(C), pages 167-178.
    29. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    30. Stephen R. Carpenter & Kenneth J. Arrow & Scott Barrett & Reinette Biggs & William A. Brock & Anne-Sophie Crépin & Gustav Engström & Carl Folke & Terry P. Hughes & Nils Kautsky & Chuan-Zhong Li & Geof, 2012. "General Resilience to Cope with Extreme Events," Sustainability, MDPI, vol. 4(12), pages 1-12, November.
    31. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    32. Chen, Hao & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2016. "Impacts of OPEC's political risk on the international crude oil prices: An empirical analysis based on the SVAR models," Energy Economics, Elsevier, vol. 57(C), pages 42-49.
    33. Cunado, Juncal & Jo, Soojin & Perez de Gracia, Fernando, 2015. "Macroeconomic impacts of oil price shocks in Asian economies," Energy Policy, Elsevier, vol. 86(C), pages 867-879.
    34. Morales, Raffaello & Di Matteo, T. & Gramatica, Ruggero & Aste, Tomaso, 2012. "Dynamical generalized Hurst exponent as a tool to monitor unstable periods in financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(11), pages 3180-3189.
    35. Martina, Esteban & Rodriguez, Eduardo & Escarela-Perez, Rafael & Alvarez-Ramirez, Jose, 2011. "Multiscale entropy analysis of crude oil price dynamics," Energy Economics, Elsevier, vol. 33(5), pages 936-947, September.
    36. Dutta, Srimonti & Ghosh, Dipak & Samanta, Shukla & Dey, Santanu, 2014. "Multifractal parameters as an indication of different physiological and pathological states of the human brain," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 396(C), pages 155-163.
    37. Kaufmann, Robert K. & Ullman, Ben, 2009. "Oil prices, speculation, and fundamentals: Interpreting causal relations among spot and futures prices," Energy Economics, Elsevier, vol. 31(4), pages 550-558, July.
    38. T. Di Matteo, 2007. "Multi-scaling in finance," Quantitative Finance, Taylor & Francis Journals, vol. 7(1), pages 21-36.
    39. Soytas, Ugur & Oran, Adil, 2011. "Volatility spillover from world oil spot markets to aggregate and electricity stock index returns in Turkey," Applied Energy, Elsevier, vol. 88(1), pages 354-360, January.
    40. Laurent E. Calvet, 2004. "How to Forecast Long-Run Volatility: Regime Switching and the Estimation of Multifractal Processes," Journal of Financial Econometrics, Oxford University Press, vol. 2(1), pages 49-83.
    41. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold & Paul Labys, 2003. "Modeling and Forecasting Realized Volatility," Econometrica, Econometric Society, vol. 71(2), pages 579-625, March.
    42. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    43. Lee, Chien-Chiang & Zeng, Jhih-Hong, 2011. "Revisiting the relationship between spot and futures oil prices: Evidence from quantile cointegrating regression," Energy Economics, Elsevier, vol. 33(5), pages 924-935, September.
    44. Rizvi, Syed Aun R. & Arshad, Shaista & Alam, Nafis, 2018. "A tripartite inquiry into volatility-efficiency-integration nexus - case of emerging markets," Emerging Markets Review, Elsevier, vol. 34(C), pages 143-161.
    45. J.-P. Bouchaud & M. Potters & M. Meyer, 2000. "Apparent multifractality in financial time series," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 13(3), pages 595-599, February.
    46. Niu, Hongli & Wang, Jun, 2017. "Return volatility duration analysis of NYMEX energy futures and spot," Energy, Elsevier, vol. 140(P1), pages 837-849.
    47. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2017. "A multifractal detrended fluctuation analysis of financial market efficiency: Comparison using Dow Jones sector ETF indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 182-192.
    48. Herwartz, Helmut & Plödt, Martin, 2016. "The macroeconomic effects of oil price shocks: Evidence from a statistical identification approach," Journal of International Money and Finance, Elsevier, vol. 61(C), pages 30-44.
    49. Wang, Yudong & Wu, Chongfeng & Yang, Li, 2016. "Forecasting crude oil market volatility: A Markov switching multifractal volatility approach," International Journal of Forecasting, Elsevier, vol. 32(1), pages 1-9.
    50. Bradley T. Ewing & Shawkat M. Hammoudeh & Mark A. Thompson, 2006. "Examining Asymmetric Behavior in US Petroleum Futures and Spot Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 9-24.
    51. Subhakar, D. & Chandrasekhar, E., 2016. "Reservoir characterization using multifractal detrended fluctuation analysis of geophysical well-log data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 57-65.
    52. Martijn Cremers & Michael Halling & David Weinbaum, 2015. "Aggregate Jump and Volatility Risk in the Cross-Section of Stock Returns," Journal of Finance, American Finance Association, vol. 70(2), pages 577-614, April.
    53. Kang, Sang Hoon & McIver, Ron & Yoon, Seong-Min, 2017. "Dynamic spillover effects among crude oil, precious metal, and agricultural commodity futures markets," Energy Economics, Elsevier, vol. 62(C), pages 19-32.
    54. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    55. Yang, Yan-Hong & Shao, Ying-Hui & Shao, Hao-Lin & Stanley, H. Eugene, 2019. "Revisiting the weak-form efficiency of the EUR/CHF exchange rate market: Evidence from episodes of different Swiss franc regimes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 734-746.
    56. Mensi, Walid & Hammoudeh, Shawkat & Kang, Sang Hoon, 2015. "Precious metals, cereal, oil and stock market linkages and portfolio risk management: Evidence from Saudi Arabia," Economic Modelling, Elsevier, vol. 51(C), pages 340-358.
    57. Bernanke, Ben S & Gertler, Mark & Watson, Mark W, 2004. "Oil Shocks and Aggregate Macroeconomic Behavior: The Role of Monetary Policy: Reply," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(2), pages 287-291, April.
    58. Robert S. Pindyck, 2001. "The Dynamics of Commodity Spot and Futures Markets: A Primer," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 1-30.
    59. Cao, Guangxi & Xu, Wei, 2016. "Multifractal features of EUA and CER futures markets by using multifractal detrended fluctuation analysis based on empirical model decomposition," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 212-222.
    60. Aloui, Chaker & Mabrouk, Samir, 2010. "Value-at-risk estimations of energy commodities via long-memory, asymmetry and fat-tailed GARCH models," Energy Policy, Elsevier, vol. 38(5), pages 2326-2339, May.
    61. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    62. Juan Luis Lopez & Jesus Guillermo Contreras, 2013. "Performance of multifractal detrended fluctuation analysis on short time series," Papers 1311.2278, arXiv.org.
    63. Zoltan Eisler & Josep Perello & Jaume Masoliver, 2006. "Volatility: a hidden Markov process in financial time series," Papers physics/0612084, arXiv.org, revised Jul 2007.
    64. Lima, L.S. & Miranda, L.L.B., 2018. "Price dynamics of the financial markets using the stochastic differential equation for a potential double well," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 828-833.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernandes, Leonardo H.S. & Araújo, Fernando H.A., 2020. "Taxonomy of commodities assets via complexity-entropy causality plane," Chaos, Solitons & Fractals, Elsevier, vol. 137(C).
    2. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    3. Akash P. POOJARI & Siva Kiran GUPTHA & G Raghavender RAJU, 2022. "Multifractal analysis of equities. Evidence from the emerging and frontier banking sectors," Theoretical and Applied Economics, Asociatia Generala a Economistilor din Romania / Editura Economica, vol. 0(3(632), A), pages 61-80, Autumn.
    4. Miroslava Zavadska & Lucía Morales & Joseph Coughlan, 2018. "The Lead–Lag Relationship between Oil Futures and Spot Prices—A Literature Review," IJFS, MDPI, vol. 6(4), pages 1-22, October.
    5. Fernandes, Leonardo H.S. & Araújo, Fernando H.A. & Silva, Igor E.M. & Leite, Urbanno P.S. & de Lima, Neílson F. & Stosic, Tatijana & Ferreira, Tiago A.E., 2020. "Multifractal behavior in the dynamics of Brazilian inflation indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    6. Kristoufek, Ladislav, 2019. "Are the crude oil markets really becoming more efficient over time? Some new evidence," Energy Economics, Elsevier, vol. 82(C), pages 253-263.
    7. Barunik, Jozef & Aste, Tomaso & Di Matteo, T. & Liu, Ruipeng, 2012. "Understanding the source of multifractality in financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4234-4251.
    8. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    9. Stosic, Dusan & Stosic, Darko & de Mattos Neto, Paulo S.G. & Stosic, Tatijana, 2019. "Multifractal characterization of Brazilian market sectors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 956-964.
    10. Cheng, Fangzheng & Fan, Tijun & Fan, Dandan & Li, Shanling, 2018. "The prediction of oil price turning points with log-periodic power law and multi-population genetic algorithm," Energy Economics, Elsevier, vol. 72(C), pages 341-355.
    11. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    12. Xin-Lan Fu & Xing-Lu Gao & Zheng Shan & Zhi-Qiang Jiang & Wei-Xing Zhou, 2018. "Multifractal characteristics and return predictability in the Chinese stock markets," Papers 1806.07604, arXiv.org.
    13. Ladislav Kristoufek & Miloslav Vosvrda, 2014. "Measuring capital market efficiency: long-term memory, fractal dimension and approximate entropy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 87(7), pages 1-9, July.
    14. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    15. Morales, Raffaello & Di Matteo, T. & Aste, Tomaso, 2013. "Non-stationary multifractality in stock returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6470-6483.
    16. Haider Ali & Faheem Aslam & Paulo Ferreira, 2021. "Modeling Dynamic Multifractal Efficiency of US Electricity Market," Energies, MDPI, vol. 14(19), pages 1-16, September.
    17. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    18. Caraiani, Petre & Haven, Emmanuel, 2015. "Evidence of multifractality from CEE exchange rates against Euro," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 395-407.
    19. Corzo Santamaría, Teresa & Martin-Bujack, Karin & Portela, Jose & Sáenz-Diez, Rocio, 2022. "Early market efficiency testing among hydrogen players," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 723-742.
    20. Kukacka, Jiri & Kristoufek, Ladislav, 2020. "Do ‘complex’ financial models really lead to complex dynamics? Agent-based models and multifractality," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:556:y:2020:i:c:s0378437120303952. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.