IDEAS home Printed from https://ideas.repec.org/a/eee/jocoma/v23y2021ics2405851321000015.html
   My bibliography  Save this article

The price of crude oil and (conditional) out-of-sample predictability of world industrial production

Author

Listed:
  • Nonejad, Nima

Abstract

A measure of global economic activity (EA) is often used as input in macroeconometric models. Baumeister and Hamilton (2019) and Hamilton (2019) favor using the world industrial production index as a measure for global EA. Given the connections between variations in industrial production and demand for industrial commodities, such as crude oil, one is inclined to assume that changes in the world industrial production index can be predicted out-of-sample if one conditions on changes in the price of crude oil. Interestingly, we do not find any evidence of out-of-sample point forecast accuracy gains from our crude oil price-based models relative to the benchmark. Likewise, the unconditional equal predictive ability test suggested in Diebold and Mariano (1995) rarely indicates a statistical difference between point forecasts produced under the benchmark and the crude oil price-based models. However, the null hypothesis of equal conditional predictive ability as specified in Giacomini and White (2006) is often rejected. By relying on the information provided by the conditioning variables used in the Giacomini and White (2006) test, and devising a forecast selection strategy following Granziera and Sekhposyan (2019), we succeed at obtaining one-month ahead point forecast accuracy gains as high as 14% relative to the benchmark. The nonlinear model using the one-year asymmetric net crude oil price change performs very well when business conditions are bad or equity market uncertainty is high.

Suggested Citation

  • Nonejad, Nima, 2021. "The price of crude oil and (conditional) out-of-sample predictability of world industrial production," Journal of Commodity Markets, Elsevier, vol. 23(C).
  • Handle: RePEc:eee:jocoma:v:23:y:2021:i:c:s2405851321000015
    DOI: 10.1016/j.jcomm.2021.100167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2405851321000015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jcomm.2021.100167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamilton, James D., 1996. "This is what happened to the oil price-macroeconomy relationship," Journal of Monetary Economics, Elsevier, vol. 38(2), pages 215-220, October.
    2. Simona Delle Chiaie & Laurent Ferrara & Domenico Giannone, 2022. "Common factors of commodity prices," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 461-476, April.
    3. Hong, Harrison & Torous, Walter & Valkanov, Rossen, 2007. "Do industries lead stock markets?," Journal of Financial Economics, Elsevier, vol. 83(2), pages 367-396, February.
    4. Alquist, Ron & Kilian, Lutz & Vigfusson, Robert J., 2013. "Forecasting the Price of Oil," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 427-507, Elsevier.
    5. Christiane Baumeister & Gert Peersman, 2013. "The Role Of Time‐Varying Price Elasticities In Accounting For Volatility Changes In The Crude Oil Market," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(7), pages 1087-1109, November.
    6. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    7. Granziera, Eleonora & Sekhposyan, Tatevik, 2019. "Predicting relative forecasting performance: An empirical investigation," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1636-1657.
    8. Baumeister, Christiane & Guérin, Pierre, 2021. "A comparison of monthly global indicators for forecasting growth," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
    9. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    10. Balcilar, Mehmet & Gupta, Rangan & Miller, Stephen M., 2015. "Regime switching model of US crude oil and stock market prices: 1859 to 2013," Energy Economics, Elsevier, vol. 49(C), pages 317-327.
    11. Christiane Baumeister & Lutz Kilian, 2014. "What Central Bankers Need To Know About Forecasting Oil Prices," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 55(3), pages 869-889, August.
    12. Hamilton, James D., 2011. "Nonlinearities And The Macroeconomic Effects Of Oil Prices," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 364-378, November.
    13. Serena Ng & Jonathan H. Wright, 2013. "Facts and Challenges from the Great Recession for Forecasting and Macroeconomic Modeling," Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1120-1154, December.
    14. Christiane Baumeister & Lutz Kilian, 2016. "Understanding the Decline in the Price of Oil since June 2014," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 3(1), pages 131-158.
    15. Gil-Alana, Luis A. & Gupta, Rangan, 2014. "Persistence and cycles in historical oil price data," Energy Economics, Elsevier, vol. 45(C), pages 511-516.
    16. Nonejad, Nima, 2020. "Crude oil price changes and the United Kingdom real gross domestic product growth rate: An out-of-sample investigation," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    17. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    18. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    19. Gil-Alana, Luis A. & Gupta, Rangan & Olubusoye, Olusanya E. & Yaya, OlaOluwa S., 2016. "Time series analysis of persistence in crude oil price volatility across bull and bear regimes," Energy, Elsevier, vol. 109(C), pages 29-37.
    20. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    21. Shaohua Chen & Martin Ravallion, 2010. "The Developing World is Poorer than We Thought, But No Less Successful in the Fight Against Poverty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(4), pages 1577-1625.
    22. Narayan, Paresh Kumar & Sharma, Susan & Poon, Wai Ching & Westerlund, Joakim, 2014. "Do oil prices predict economic growth? New global evidence," Energy Economics, Elsevier, vol. 41(C), pages 137-146.
    23. Narayan, Paresh Kumar & Gupta, Rangan, 2015. "Has oil price predicted stock returns for over a century?," Energy Economics, Elsevier, vol. 48(C), pages 18-23.
    24. Lutz Kilian, 2009. "Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks in the Crude Oil Market," American Economic Review, American Economic Association, vol. 99(3), pages 1053-1069, June.
    25. Francesco Ravazzolo & Joaquin Vespignani, 2020. "World steel production: A new monthly indicator of global real economic activity," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 53(2), pages 743-766, May.
    26. Nonejad, Nima, 2020. "An observation regarding Hamilton’s recent criticisms of Kilian’s global real economic activity index," Economics Letters, Elsevier, vol. 196(C).
    27. Lutz Kilian & Robert J. Vigfusson, 2013. "Do Oil Prices Help Forecast U.S. Real GDP? The Role of Nonlinearities and Asymmetries," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 78-93, January.
    28. Alquist, Ron & Bhattarai, Saroj & Coibion, Olivier, 2020. "Commodity-price comovement and global economic activity," Journal of Monetary Economics, Elsevier, vol. 112(C), pages 41-56.
    29. Christiane Baumeister & James D. Hamilton, 2019. "Structural Interpretation of Vector Autoregressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand Shocks," American Economic Review, American Economic Association, vol. 109(5), pages 1873-1910, May.
    30. Tilmann Gneiting & Roopesh Ranjan, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 411-422, July.
    31. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    32. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    33. Tokic, Damir, 2015. "The 2014 oil bust: Causes and consequences," Energy Policy, Elsevier, vol. 85(C), pages 162-169.
    34. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    35. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    36. James D. Hamilton, 2019. "Measuring Global Economic Activity," NBER Working Papers 25778, National Bureau of Economic Research, Inc.
    37. Kilian, Lutz & Zhou, Xiaoqing, 2018. "Modeling fluctuations in the global demand for commodities," Journal of International Money and Finance, Elsevier, vol. 88(C), pages 54-78.
    38. Hamilton, James D, 1983. "Oil and the Macroeconomy since World War II," Journal of Political Economy, University of Chicago Press, vol. 91(2), pages 228-248, April.
    39. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    40. West, Kenneth D. & Wong, Ka-Fu, 2014. "A factor model for co-movements of commodity prices," Journal of International Money and Finance, Elsevier, vol. 42(C), pages 289-309.
    41. Lance Bachmeier & Qi Li & Dandan Liu, 2008. "Should Oil Prices Receive So Much Attention? An Evaluation Of The Predictive Power Of Oil Prices For The U.S. Economy," Economic Inquiry, Western Economic Association International, vol. 46(4), pages 528-539, October.
    42. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    43. Kilian, Lutz & Vigfusson, Robert J., 2011. "Nonlinearities In The Oil Price–Output Relationship," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 337-363, November.
    44. Nima Nonejad, 2020. "A detailed look at crude oil price volatility prediction using macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1119-1141, November.
    45. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    46. Francesco Ravazzolo & Philip Rothman, 2013. "Oil and U.S. GDP: A Real-Time Out-of-Sample Examination," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 45(2-3), pages 449-463, March.
    47. Paye, Bradley S., 2012. "‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables," Journal of Financial Economics, Elsevier, vol. 106(3), pages 527-546.
    48. Nicholas Bloom, 2009. "The Impact of Uncertainty Shocks," Econometrica, Econometric Society, vol. 77(3), pages 623-685, May.
    49. Herrera, Ana María & Lagalo, Latika Gupta & Wada, Tatsuma, 2011. "Oil Price Shocks And Industrial Production: Is The Relationship Linear?," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 472-497, November.
    50. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    51. repec:mcb:jmoncb:v:45:y:2013:i::p:449-463 is not listed on IDEAS
    52. Herrera, Ana María & Lagalo, Latika Gupta & Wada, Tatsuma, 2015. "Asymmetries in the response of economic activity to oil price increases and decreases?," Journal of International Money and Finance, Elsevier, vol. 50(C), pages 108-133.
    53. Swanson, Norman R., 1998. "Money and output viewed through a rolling window," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 455-474, May.
    54. Sydney C. Ludvigson & Sai Ma & Serena Ng, 2021. "Uncertainty and Business Cycles: Exogenous Impulse or Endogenous Response?," American Economic Journal: Macroeconomics, American Economic Association, vol. 13(4), pages 369-410, October.
    55. Harrison Hong & Jeremy C. Stein, 1999. "A Unified Theory of Underreaction, Momentum Trading, and Overreaction in Asset Markets," Journal of Finance, American Finance Association, vol. 54(6), pages 2143-2184, December.
    56. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    57. Ravazzolo Francesco & Rothman Philip, 2016. "Oil-price density forecasts of US GDP," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 20(4), pages 441-453, September.
    58. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    59. Gneiting, Tilmann & Ranjan, Roopesh, 2011. "Comparing Density Forecasts Using Threshold- and Quantile-Weighted Scoring Rules," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(3), pages 411-422.
    60. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    61. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    62. James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nima Nonejad, 2022. "New Findings Regarding the Out-of-Sample Predictive Impact of the Price of Crude Oil on the United States Industrial Production," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(1), pages 1-35, March.
    2. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
    3. Nonejad, Nima, 2021. "Predicting the return on the spot price of crude oil out-of-sample by conditioning on news-based uncertainty measures: Some new empirical results," Energy Economics, Elsevier, vol. 104(C).
    4. Mei, Dexiang & Xie, Yutang, 2022. "U.S. grain commodity futures price volatility: Does trade policy uncertainty matter?," Finance Research Letters, Elsevier, vol. 48(C).
    5. Nonejad, Nima, 2023. "Conditional out-of-sample predictability of aggregate equity returns and aggregate equity return volatility using economic variables," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 91-122.
    6. Zhang, Lixia & Bai, Jiancheng & Zhang, Yueyan & Cui, Can, 2023. "Global economic uncertainty and the Chinese stock market: Assessing the impacts of global indicators," Research in International Business and Finance, Elsevier, vol. 65(C).
    7. Salisu, Afees A. & Isah, Kazeem & Oloko, Tirimisiyu O., 2024. "Technology shocks and crude oil market connection: The role of climate change," Energy Economics, Elsevier, vol. 130(C).
    8. Wang, Shu & Zhou, Baicheng & Gao, Tianshu, 2023. "Speculation or actual demand? The return spillover effect between stock and commodity markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
    9. Hu, Jinyan & Wang, Kai-Hua & Su, Chi Wei & Umar, Muhammad, 2022. "Oil price, green innovation and institutional pressure: A China's perspective," Resources Policy, Elsevier, vol. 78(C).
    10. Mhd Ruslan, Siti Marsila & Mokhtar, Kasypi, 2021. "Stock market volatility on shipping stock prices: GARCH models approach," The Journal of Economic Asymmetries, Elsevier, vol. 24(C).
    11. Nonejad, Nima, 2022. "Understanding the conditional out-of-sample predictive impact of the price of crude oil on aggregate equity return volatility," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nonejad, Nima, 2022. "Understanding the conditional out-of-sample predictive impact of the price of crude oil on aggregate equity return volatility," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    2. Nonejad, Nima, 2023. "Conditional out-of-sample predictability of aggregate equity returns and aggregate equity return volatility using economic variables," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 91-122.
    3. Nima Nonejad, 2021. "Should crude oil price volatility receive more attention than the price of crude oil? An empirical investigation via a large‐scale out‐of‐sample forecast evaluation of US macroeconomic data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 769-791, August.
    4. Nima Nonejad, 2022. "New Findings Regarding the Out-of-Sample Predictive Impact of the Price of Crude Oil on the United States Industrial Production," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(1), pages 1-35, March.
    5. Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
    6. Nima Nonejad, 2021. "Crude oil price point forecasts of the Norwegian GDP growth rate," Empirical Economics, Springer, vol. 61(5), pages 2913-2930, November.
    7. Nonejad, Nima, 2022. "Equity premium prediction using the price of crude oil: Uncovering the nonlinear predictive impact," Energy Economics, Elsevier, vol. 115(C).
    8. Nonejad, Nima, 2020. "A comprehensive empirical analysis of the predictive impact of the price of crude oil on aggregate equity return volatility," Journal of Commodity Markets, Elsevier, vol. 20(C).
    9. Nonejad, Nima, 2021. "Predicting the return on the spot price of crude oil out-of-sample by conditioning on news-based uncertainty measures: Some new empirical results," Energy Economics, Elsevier, vol. 104(C).
    10. Nonejad, Nima, 2020. "Crude oil price changes and the United Kingdom real gross domestic product growth rate: An out-of-sample investigation," The Journal of Economic Asymmetries, Elsevier, vol. 21(C).
    11. Nonejad, Nima, 2019. "Forecasting aggregate equity return volatility using crude oil price volatility: The role of nonlinearities and asymmetries," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    12. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    13. Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
    14. Nima Nonejad, 2020. "Does the price of crude oil help predict the conditional distribution of aggregate equity return?," Empirical Economics, Springer, vol. 58(1), pages 313-349, January.
    15. Nonejad, Nima, 2021. "Predicting equity premium using news-based economic policy uncertainty: Not all uncertainty changes are equally important," International Review of Financial Analysis, Elsevier, vol. 77(C).
    16. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    17. Christiane Baumeister & Dimitris Korobilis & Thomas K. Lee, 2022. "Energy Markets and Global Economic Conditions," The Review of Economics and Statistics, MIT Press, vol. 104(4), pages 828-844, October.
    18. Nima Nonejad, 2020. "A detailed look at crude oil price volatility prediction using macroeconomic variables," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1119-1141, November.
    19. Herrera, Ana María & Karaki, Mohamad B. & Rangaraju, Sandeep Kumar, 2019. "Oil price shocks and U.S. economic activity," Energy Policy, Elsevier, vol. 129(C), pages 89-99.
    20. Wang, Yudong & Pan, Zhiyuan & Liu, Li & Wu, Chongfeng, 2019. "Oil price increases and the predictability of equity premium," Journal of Banking & Finance, Elsevier, vol. 102(C), pages 43-58.

    More about this item

    Keywords

    Conditional predictive ability; Crude oil price; Forecast selection; Global economic activity;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jocoma:v:23:y:2021:i:c:s2405851321000015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jcomm .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.