IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v166y2024ics0378426624001663.html
   My bibliography  Save this article

Belief dispersion in the Chinese stock market and fund flows

Author

Listed:
  • Fang, Yue
  • Luo, Deming
  • Yao, Zhongwei

Abstract

This study explores how Chinese mutual fund managers’ degrees of disagreement (DOD) on stock market returns affect investor capital allocation decisions using a novel text-based measure of expectations in fund disclosures. In the time series, the DOD negatively predicts market returns. Cross-sectional results show that investors correctly perceive the DOD as an overpricing signal and discount fund performance accordingly. Flow-performance sensitivity (FPS) is diminished during high dispersion periods. The effect is stronger for outperforming funds and funds with substantial investments in bubble and high-beta stocks, but weaker for skilled funds. We also discuss the financial sophistication of investors and provide evidence that our results are not contingent upon such sophistication.

Suggested Citation

  • Fang, Yue & Luo, Deming & Yao, Zhongwei, 2024. "Belief dispersion in the Chinese stock market and fund flows," Journal of Banking & Finance, Elsevier, vol. 166(C).
  • Handle: RePEc:eee:jbfina:v:166:y:2024:i:c:s0378426624001663
    DOI: 10.1016/j.jbankfin.2024.107252
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426624001663
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2024.107252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Yun & Luk, Paul, 2020. "Measuring economic policy uncertainty in China," China Economic Review, Elsevier, vol. 59(C).
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Han, Bing & Lu, Lei & Zhou, Yi, 2019. "Two Trees with Heterogeneous Beliefs: Spillover Effect of Disagreement," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 54(4), pages 1791-1819, August.
    4. Karl B. Diether & Christopher J. Malloy & Anna Scherbina, 2002. "Differences of Opinion and the Cross Section of Stock Returns," Journal of Finance, American Finance Association, vol. 57(5), pages 2113-2141, October.
    5. Adem Atmaz & Suleyman Basak, 2018. "Belief Dispersion in the Stock Market," Journal of Finance, American Finance Association, vol. 73(3), pages 1225-1279, June.
    6. Andrew Ang & Geert Bekaert, 2007. "Stock Return Predictability: Is it There?," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 651-707.
    7. Jang, Jeewon & Kang, Jangkoo, 2019. "Probability of price crashes, rational speculative bubbles, and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 222-247.
    8. Peter Reinhard Hansen & Allan Timmermann, 2012. "Choice of Sample Split in Out-of-Sample Forecast Evaluation," CREATES Research Papers 2012-43, Department of Economics and Business Economics, Aarhus University.
    9. Bryan Kelly & Hao Jiang, 2014. "Editor's Choice Tail Risk and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 27(10), pages 2841-2871.
    10. Kothari, S. P. & Shanken, Jay, 1997. "Book-to-market, dividend yield, and expected market returns: A time-series analysis," Journal of Financial Economics, Elsevier, vol. 44(2), pages 169-203, May.
    11. Berkman, Henk & Dimitrov, Valentin & Jain, Prem C. & Koch, Paul D. & Tice, Sheri, 2009. "Sell on the news: Differences of opinion, short-sales constraints, and returns around earnings announcements," Journal of Financial Economics, Elsevier, vol. 92(3), pages 376-399, June.
    12. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    13. Hsieh, Shu-Fan & Chan, Chia-Ying & Wang, Ming-Chun, 2020. "Retail investor attention and herding behavior," Journal of Empirical Finance, Elsevier, vol. 59(C), pages 109-132.
    14. Chen, Joseph & Hong, Harrison & Stein, Jeremy C., 2002. "Breadth of ownership and stock returns," Journal of Financial Economics, Elsevier, vol. 66(2-3), pages 171-205.
    15. Zhi Da & Joseph Engelberg & Pengjie Gao, 2011. "In Search of Attention," Journal of Finance, American Finance Association, vol. 66(5), pages 1461-1499, October.
    16. Richard Frankel & Jared Jennings & Joshua Lee, 2022. "Disclosure Sentiment: Machine Learning vs. Dictionary Methods," Management Science, INFORMS, vol. 68(7), pages 5514-5532, July.
    17. Francesco A. Franzoni & Martin C. Schmalz, 2013. "Fund Flows and Market States," Swiss Finance Institute Research Paper Series 13-41, Swiss Finance Institute, revised Jun 2017.
    18. repec:bla:jfinan:v:53:y:1998:i:5:p:1589-1622 is not listed on IDEAS
    19. Jonathan B. Berk & Richard C. Green, 2004. "Mutual Fund Flows and Performance in Rational Markets," Journal of Political Economy, University of Chicago Press, vol. 112(6), pages 1269-1295, December.
    20. Richard B. Evans, 2010. "Mutual Fund Incubation," Journal of Finance, American Finance Association, vol. 65(4), pages 1581-1611, August.
    21. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    22. repec:bla:jfinan:v:59:y:2004:i:5:p:2013-2040 is not listed on IDEAS
    23. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    24. Yu, Jialin, 2011. "Disagreement and return predictability of stock portfolios," Journal of Financial Economics, Elsevier, vol. 99(1), pages 162-183, January.
    25. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    26. Berk, Jonathan B. & van Binsbergen, Jules H., 2016. "Assessing asset pricing models using revealed preference," Journal of Financial Economics, Elsevier, vol. 119(1), pages 1-23.
    27. Nicholas Barberis & Wei Xiong, 2009. "What Drives the Disposition Effect? An Analysis of a Long‐Standing Preference‐Based Explanation," Journal of Finance, American Finance Association, vol. 64(2), pages 751-784, April.
    28. Miller, Edward M, 1977. "Risk, Uncertainty, and Divergence of Opinion," Journal of Finance, American Finance Association, vol. 32(4), pages 1151-1168, September.
    29. Jingchi Liao & Cameron Peng & Ning Zhu, 2022. "Extrapolative Bubbles and Trading Volume," The Review of Financial Studies, Society for Financial Studies, vol. 35(4), pages 1682-1722.
    30. Luboš Pástor & Robert F. Stambaugh & Lucian A. Taylor & Min Zhu, 2022. "Diseconomies of Scale in Active Management: Robust Evidence," Critical Finance Review, now publishers, vol. 11(3-4), pages 593-611, August.
    31. Berk, Jonathan B. & van Binsbergen, Jules H., 2015. "Measuring skill in the mutual fund industry," Journal of Financial Economics, Elsevier, vol. 118(1), pages 1-20.
    32. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    33. Hodrick, Robert J, 1992. "Dividend Yields and Expected Stock Returns: Alternative Procedures for Inference and Measurement," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 357-386.
    34. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    35. Francesco Franzoni & Martin C. Schmalz, 2017. "Fund Flows and Market States," The Review of Financial Studies, Society for Financial Studies, vol. 30(8), pages 2621-2673.
    36. Jiang, Hao & Sun, Zheng, 2014. "Dispersion in beliefs among active mutual funds and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 114(2), pages 341-365.
    37. Pástor, Ľuboš & Stambaugh, Robert F. & Taylor, Lucian A., 2015. "Scale and skill in active management," Journal of Financial Economics, Elsevier, vol. 116(1), pages 23-45.
    38. Leonard Kostovetsky & Jerold B. Warner, 2020. "Measuring Innovation and Product Differentiation: Evidence from Mutual Funds," Journal of Finance, American Finance Association, vol. 75(2), pages 779-823, April.
    39. Dan Li & Geng Li, 2021. "Whose Disagreement Matters? Household Belief Dispersion and Stock Trading Volume [Belief dispersion in the stock market]," Review of Finance, European Finance Association, vol. 25(6), pages 1859-1900.
    40. Robin Greenwood & Andrei Shleifer, 2014. "Expectations of Returns and Expected Returns," The Review of Financial Studies, Society for Financial Studies, vol. 27(3), pages 714-746.
    41. Chi, Yeguang & He, Jingbin & Wu, Fei & Yin, Bijiao, 2022. "Optimal information production of mutual funds: Evidence from China," Journal of Banking & Finance, Elsevier, vol. 143(C).
    42. Frank Weikai Li, 2016. "Macro Disagreement and the Cross-Section of Stock Returns," The Review of Asset Pricing Studies, Society for Financial Studies, vol. 6(1), pages 1-45.
    43. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    44. Harvey, Campbell R. & Liu, Yan, 2019. "Cross-sectional alpha dispersion and performance evaluation," Journal of Financial Economics, Elsevier, vol. 134(2), pages 273-296.
    45. Hwang, Byoung-Hyoun & Kim, Hugh Hoikwang, 2017. "It pays to write well," Journal of Financial Economics, Elsevier, vol. 124(2), pages 373-394.
    46. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    47. Zhu, Min, 2018. "Informative fund size, managerial skill, and investor rationality," Journal of Financial Economics, Elsevier, vol. 130(1), pages 114-134.
    48. David E. Rapach & Jack K. Strauss & Guofu Zhou, 2010. "Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 821-862, February.
    49. Luo, Deming & Yao, Zhongwei & Zhu, Yanjian, 2022. "Bubble-crash experience and investment styles of mutual fund managers," Journal of Corporate Finance, Elsevier, vol. 76(C).
    50. Benjamin Golez & Ruslan Goyenko, 2022. "Disagreement in the Equity Options Market and Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 35(3), pages 1443-1479.
    51. Nishant Dass & Massimo Massa & Rajdeep Patgiri, 2008. "Mutual Funds and Bubbles: The Surprising Role of Contractual Incentives," The Review of Financial Studies, Society for Financial Studies, vol. 21(1), pages 51-99, January.
    52. Kostopoulos, Dimitrios & Meyer, Steffen & Uhr, Charline, 2020. "Google search volume and individual investor trading," Journal of Financial Markets, Elsevier, vol. 49(C).
    53. Doukas, John A. & Kim, Chansog (Francis) & Pantzalis, Christos, 2006. "Divergence of Opinion and Equity Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(3), pages 573-606, September.
    54. Cheolbeom Park, 2005. "Stock Return Predictability and the Dispersion in Earnings Forecasts," The Journal of Business, University of Chicago Press, vol. 78(6), pages 2351-2376, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huang, Dashan & Li, Jiangyuan & Wang, Liyao, 2021. "Are disagreements agreeable? Evidence from information aggregation," Journal of Financial Economics, Elsevier, vol. 141(1), pages 83-101.
    2. Lin, Qi & Lin, Xi, 2021. "Cash conversion cycle and aggregate stock returns," Journal of Financial Markets, Elsevier, vol. 52(C).
    3. Jiang, Fuwei & Lee, Joshua & Martin, Xiumin & Zhou, Guofu, 2019. "Manager sentiment and stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 126-149.
    4. Yu, Jialin, 2011. "Disagreement and return predictability of stock portfolios," Journal of Financial Economics, Elsevier, vol. 99(1), pages 162-183, January.
    5. Kim, Jun Sik & Ryu, Doojin & Seo, Sung Won, 2014. "Investor sentiment and return predictability of disagreement," Journal of Banking & Finance, Elsevier, vol. 42(C), pages 166-178.
    6. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    7. Li, Yan & Ng, David T. & Swaminathan, Bhaskaran, 2013. "Predicting market returns using aggregate implied cost of capital," Journal of Financial Economics, Elsevier, vol. 110(2), pages 419-436.
    8. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    9. Yu, Deshui & Huang, Difang, 2023. "Cross-sectional uncertainty and expected stock returns," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 321-340.
    10. Faias, José Afonso, 2023. "Predicting the equity risk premium using the smooth cross-sectional tail risk: The importance of correlation," Journal of Financial Markets, Elsevier, vol. 63(C).
    11. Stig V. Møller & Jesper Rangvid, 2018. "Global Economic Growth and Expected Returns Around the World: The End-of-the-Year Effect," Management Science, INFORMS, vol. 64(2), pages 573-591, February.
    12. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Tuneshev, Ruslan, 2018. "Differences in options investors’ expectations and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 315-336.
    13. Bing Han & Gang Li, 2021. "Information Content of Aggregate Implied Volatility Spread," Management Science, INFORMS, vol. 67(2), pages 1249-1269, February.
    14. Shi, Zhan, 2019. "Time-varying ambiguity, credit spreads, and the levered equity premium," Journal of Financial Economics, Elsevier, vol. 134(3), pages 617-646.
    15. Cao, Charles & Simin, Timothy & Xiao, Han, 2020. "Predicting the equity premium with the implied volatility spread," Journal of Financial Markets, Elsevier, vol. 51(C).
    16. Cao, Charles & Simin, Timothy & Xiao, Han, 2019. "Predicting the equity premium with the implied volatility spread," MPRA Paper 103651, University Library of Munich, Germany.
    17. Liya Chu & Xue-Zhong He & Kai Li & Jun Tu, 2022. "Investor Sentiment and Paradigm Shifts in Equity Return Forecasting," Management Science, INFORMS, vol. 68(6), pages 4301-4325, June.
    18. Nonejad, Nima, 2021. "Predicting equity premium using news-based economic policy uncertainty: Not all uncertainty changes are equally important," International Review of Financial Analysis, Elsevier, vol. 77(C).
    19. Qiao, Fang & Xu, Lai & Zhang, Xiaoyan & Zhou, Hao, 2024. "Variance risk premiums in emerging markets," Journal of Banking & Finance, Elsevier, vol. 167(C).
    20. Lawrenz, Jochen & Zorn, Josef, 2017. "Predicting international stock returns with conditional price-to-fundamental ratios," Journal of Empirical Finance, Elsevier, vol. 43(C), pages 159-184.

    More about this item

    Keywords

    Mutual fund; Stock market expectation; Belief dispersion; Flow-performance sensitivity; Textual analysis;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G23 - Financial Economics - - Financial Institutions and Services - - - Non-bank Financial Institutions; Financial Instruments; Institutional Investors

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:166:y:2024:i:c:s0378426624001663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.