IDEAS home Printed from https://ideas.repec.org/a/eee/intfin/v38y2015icp127-147.html
   My bibliography  Save this article

How exactly do markets adapt? Evidence from the moving average rule in three developed markets

Author

Listed:
  • Urquhart, Andrew
  • Gebka, Bartosz
  • Hudson, Robert

Abstract

The seminal study by Brock, Lakonishok and LeBaron (1992) (BLL hereafter) found that the moving average rule had strong predictive power over 90 years in the DJIA, and this result was confirmed by Hudson et al. (1996) for the FT30 in the UK and Chen et al. (2009) for the TOPIX in Japan. However, according to the Adaptive Market Hypothesis, trading rules are only likely to be successful for a limited period of time and, as investors and markets adapt, their predictive power will diminish. We examine the moving average (MA) rule using post-BLL (1987–2013) data and find that after 1986 the rule's predictive power has diminished in all three markets. We investigate the exact process behind the weakening of the predictive power of moving average rules and find that post-1987 markets react to new buy/sell signals not on the days those signals are generated, but the day before. In support of this finding, we show that trading strategies based on anticipation of signals would have yielded superior profits to investors. Hence, trading on anticipated signals constitutes a feasible explanation of price reactions to future, one-day-ahead new signals, and thus in line with the Adaptive Market Hypothesis.

Suggested Citation

  • Urquhart, Andrew & Gebka, Bartosz & Hudson, Robert, 2015. "How exactly do markets adapt? Evidence from the moving average rule in three developed markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 127-147.
  • Handle: RePEc:eee:intfin:v:38:y:2015:i:c:p:127-147
    DOI: 10.1016/j.intfin.2015.05.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042443115000724
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intfin.2015.05.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    2. Hudson, Robert & Dempsey, Michael & Keasey, Kevin, 1996. "A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1121-1132, July.
    3. Hendrik Bessembinder & Kalok Chan, 1998. "Market Efficiency and the Returns to Technical Analysis," Financial Management, Financial Management Association, vol. 27(2), Summer.
    4. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    5. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    6. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    7. Mark J Ready, 2002. "Profits from Technical Trading Rules," Financial Management, Financial Management Association, vol. 31(3), Fall.
    8. Day, Theodore E. & Wang, Pingying, 2002. "Dividends, nonsynchronous prices, and the returns from trading the Dow Jones Industrial Average," Journal of Empirical Finance, Elsevier, vol. 9(4), pages 431-454, November.
    9. Han, Yufeng & Yang, Ke & Zhou, Guofu, 2013. "A New Anomaly: The Cross-Sectional Profitability of Technical Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(5), pages 1433-1461, October.
    10. Alexandru Todea & Adrian Zoicas-Ienciu & Angela-Maria Filip, 2009. "Profitability of the Moving Average Strategy and the Episodic Dependencies: Empirical Evidence from European Stock," European Research Studies Journal, European Research Studies Journal, vol. 0(1), pages 63-72.
    11. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    12. Graham Smith, 2012. "The changing and relative efficiency of European emerging stock markets," The European Journal of Finance, Taylor & Francis Journals, vol. 18(8), pages 689-708, September.
    13. Hull, Matthew & McGroarty, Frank, 2014. "Do emerging markets become more efficient as they develop? Long memory persistence in equity indices," Emerging Markets Review, Elsevier, vol. 18(C), pages 45-61.
    14. Urquhart, Andrew & McGroarty, Frank, 2014. "Calendar effects, market conditions and the Adaptive Market Hypothesis: Evidence from long-run U.S. data," International Review of Financial Analysis, Elsevier, vol. 35(C), pages 154-166.
    15. Ito, Akitoshi, 1999. "Profits on technical trading rules and time-varying expected returns: evidence from Pacific-Basin equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 7(3-4), pages 283-330, August.
    16. Schulmeister, Stephan, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, Elsevier, vol. 18(4), pages 190-201, October.
    17. Atanasova, Christina V. & Hudson, Robert S., 2010. "Technical trading rules and calendar anomalies -- Are they the same phenomena?," Economics Letters, Elsevier, vol. 106(2), pages 128-130, February.
    18. Jensen, Michael C & Bennington, George A, 1970. "Random Walks and Technical Theories: Some Additional Evidence," Journal of Finance, American Finance Association, vol. 25(2), pages 469-482, May.
    19. Menkhoff, Lukas, 2010. "The use of technical analysis by fund managers: International evidence," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
    20. James, F. E., 1968. "Monthly Moving Averages—An Effective Investment Tool?*," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 3(3), pages 315-326, September.
    21. Massoud Metghalchi & Juri Marcucci & Yung-Ho Chang, 2012. "Are moving average trading rules profitable? Evidence from the European stock markets," Applied Economics, Taylor & Francis Journals, vol. 44(12), pages 1539-1559, April.
    22. Ito, Mikio & Sugiyama, Shunsuke, 2009. "Measuring the degree of time varying market inefficiency," Economics Letters, Elsevier, vol. 103(1), pages 62-64, April.
    23. Taylor, Nick, 2014. "The rise and fall of technical trading rule success," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 286-302.
    24. Kim, Jae H. & Shamsuddin, Abul & Lim, Kian-Ping, 2011. "Stock return predictability and the adaptive markets hypothesis: Evidence from century-long U.S. data," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 868-879.
    25. Bessembinder, Hendrik & Chan, Kalok, 1995. "The profitability of technical trading rules in the Asian stock markets," Pacific-Basin Finance Journal, Elsevier, vol. 3(2-3), pages 257-284, July.
    26. Urquhart, Andrew & Hudson, Robert, 2013. "Efficient or adaptive markets? Evidence from major stock markets using very long run historic data," International Review of Financial Analysis, Elsevier, vol. 28(C), pages 130-142.
    27. Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
    28. Chen, Cheng-Wei & Huang, Chin-Sheng & Lai, Hung-Wei, 2009. "The impact of data snooping on the testing of technical analysis: An empirical study of Asian stock markets," Journal of Asian Economics, Elsevier, vol. 20(5), pages 580-591, September.
    29. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    30. Terence Tai-Leung Chong & Wing-Kam Ng, 2008. "Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30," Applied Economics Letters, Taylor & Francis Journals, vol. 15(14), pages 1111-1114.
    31. Kian-Ping Lim & Weiwei Luo & Jae H. Kim, 2013. "Are US stock index returns predictable? Evidence from automatic autocorrelation-based tests," Applied Economics, Taylor & Francis Journals, vol. 45(8), pages 953-962, March.
    32. Suzanne Fifield & David Power & C. Donald Sinclair, 2005. "An analysis of trading strategies in eleven European stock markets," The European Journal of Finance, Taylor & Francis Journals, vol. 11(6), pages 531-548.
    33. Jian Zhou & Jin Man Lee, 2013. "Adaptive market hypothesis: evidence from the REIT market," Applied Financial Economics, Taylor & Francis Journals, vol. 23(21), pages 1649-1662, November.
    34. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tiwari, Aviral Kumar & Gupta, Rangan, 2019. "Chaos in G7 stock markets using over one century of data: A note," Research in International Business and Finance, Elsevier, vol. 47(C), pages 304-310.
    2. Ikhlaas Gurrib & Mohammad Nourani & Rajesh Kumar Bhaskaran, 2022. "Energy crypto currencies and leading U.S. energy stock prices: are Fibonacci retracements profitable?," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-27, December.
    3. Rahman, Md. Lutfur & Lee, Doowon & Shamsuddin, Abul, 2017. "Time-varying return predictability in South Asian equity markets," International Review of Economics & Finance, Elsevier, vol. 48(C), pages 179-200.
    4. Green, Lawrence & Sung, Ming-Chien & Ma, Tiejun & Johnson, Johnnie E. V., 2019. "To what extent can new web-based technology improve forecasts? Assessing the economic value of information derived from Virtual Globes and its rate of diffusion in a financial market," European Journal of Operational Research, Elsevier, vol. 278(1), pages 226-239.
    5. Anghel, Dan Gabriel, 2021. "Data Snooping Bias in Tests of the Relative Performance of Multiple Forecasting Models," Journal of Banking & Finance, Elsevier, vol. 126(C).
    6. Ikhlaas Gurrib & Firuz Kamalov & Elgilani Elshareif, 2021. "Can the Leading US Energy Stock Prices be Predicted using the Ichimoku Cloud?," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 41-51.
    7. Siddique, Maryam, 2023. "Does the Adaptive Market Hypothesis Exist in Equity Market? Evidence from Pakistan Stock Exchange," OSF Preprints 9b5dx, Center for Open Science.
    8. Adrian Zoicas‐Ienciu, 2021. "Evaluating active investing with generic trading reactions," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1018-1036, January.
    9. Andrew Urquhart, 2017. "How predictable are precious metal returns?," The European Journal of Finance, Taylor & Francis Journals, vol. 23(14), pages 1390-1413, November.
    10. Sermpinis, Georgios & Hassanniakalager, Arman & Stasinakis, Charalampos & Psaradellis, Ioannis, 2021. "Technical analysis profitability and Persistence: A discrete false discovery approach on MSCI indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    11. Ferreira, Joaquim & Morais, Flávio, 2023. "Predict or to be predicted? A transfer entropy view between adaptive green markets, structural shocks and sentiment index," Finance Research Letters, Elsevier, vol. 56(C).
    12. Pınar Evrim Mandacı & F. Dilvin Taskın & Zeliha Can Ergun, 2019. "Adaptive Market Hypothesis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 84-101.
    13. Ikhlaas Gurrib, 2022. "Technical Analysis, Energy Cryptos and Energy Equity Markets," International Journal of Energy Economics and Policy, Econjournals, vol. 12(2), pages 249-267, March.
    14. Robert Hudson & Andrew Urquhart, 2021. "Technical trading and cryptocurrencies," Annals of Operations Research, Springer, vol. 297(1), pages 191-220, February.
    15. Batten, Jonathan A. & Lucey, Brian M. & McGroarty, Frank & Peat, Maurice & Urquhart, Andrew, 2018. "Does intraday technical trading have predictive power in precious metal markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 102-113.
    16. Ke Meng & Shouhao Li, 2021. "The adaptive market hypothesis and high frequency trading," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-19, December.
    17. Urquhart, Andrew & McGroarty, Frank, 2016. "Are stock markets really efficient? Evidence of the adaptive market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 39-49.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Strobel, Marcus & Auer, Benjamin R., 2018. "Does the predictive power of variable moving average rules vanish over time and can we explain such tendencies?," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 168-184.
    2. Batten, Jonathan A. & Lucey, Brian M. & McGroarty, Frank & Peat, Maurice & Urquhart, Andrew, 2018. "Does intraday technical trading have predictive power in precious metal markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 102-113.
    3. Anghel, Dan Gabriel, 2021. "Data Snooping Bias in Tests of the Relative Performance of Multiple Forecasting Models," Journal of Banking & Finance, Elsevier, vol. 126(C).
    4. Martín García, Rodrigo & Ventura Pérez, Enrique & Arguedas Sanz, Raquel, 2020. "Temporal optimisation of signals emitted automatically by securities exchange indicators," Cuadernos de Gestión, Universidad del País Vasco - Instituto de Economía Aplicada a la Empresa (IEAE).
    5. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    6. Ülkü, Numan & Prodan, Eugeniu, 2013. "Drivers of technical trend-following rules' profitability in world stock markets," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 214-229.
    7. Pınar Evrim Mandacı & F. Dilvin Taskın & Zeliha Can Ergun, 2019. "Adaptive Market Hypothesis," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(4), pages 84-101.
    8. Urquhart, Andrew & McGroarty, Frank, 2016. "Are stock markets really efficient? Evidence of the adaptive market hypothesis," International Review of Financial Analysis, Elsevier, vol. 47(C), pages 39-49.
    9. Metghalchi, Massoud & Chen, Chien-Ping & Hayes, Linda A., 2015. "History of share prices and market efficiency of the Madrid general stock index," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 178-184.
    10. Alhashel, Bader S. & Almudhaf, Fahad W. & Hansz, J. Andrew, 2018. "Can technical analysis generate superior returns in securitized property markets? Evidence from East Asia markets," Pacific-Basin Finance Journal, Elsevier, vol. 47(C), pages 92-108.
    11. Al-Khazali, Osamah & Mirzaei, Ali, 2017. "Stock market anomalies, market efficiency and the adaptive market hypothesis: Evidence from Islamic stock indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 190-208.
    12. Chen, Chien-Hua & Su, Xuan-Qi & Lin, Jun-Biao, 2016. "The role of information uncertainty in moving-average technical analysis: A study of individual stock-option issuance in Taiwan," Finance Research Letters, Elsevier, vol. 18(C), pages 263-272.
    13. Hung, Chiayu & Lai, Hung-Neng, 2022. "Information asymmetry and the profitability of technical analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).
    14. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    15. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    16. Kevin Rink, 2023. "The predictive ability of technical trading rules: an empirical analysis of developed and emerging equity markets," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 37(4), pages 403-456, December.
    17. Jin, Xiaoye, 2022. "Testing technical trading strategies on China's equity ETFs: A skewness perspective," Emerging Markets Review, Elsevier, vol. 51(PA).
    18. Osman Kilic & Joseph M. Marks & Kiseok Nam, 2022. "Predictable asset price dynamics, risk-return tradeoff, and investor behavior," Review of Quantitative Finance and Accounting, Springer, vol. 59(2), pages 749-791, August.
    19. Gebka, Bartosz & Hudson, Robert S. & Atanasova, Christina V., 2015. "The benefits of combining seasonal anomalies and technical trading rules," Finance Research Letters, Elsevier, vol. 14(C), pages 36-44.
    20. Farhang Niroomand & Massoud Metghalchi & Massomeh Hajilee, 2020. "Efficient market hypothesis: a ruinous implication for Portugese stock market," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(4), pages 749-763, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:38:y:2015:i:c:p:127-147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.