IDEAS home Printed from https://ideas.repec.org/p/nsr/niesrd/370.html
   My bibliography  Save this paper

A Nonlinear Panel Data Model of Cross-sectional Dependence

Author

Listed:
  • Dr. James Mitchell

Abstract

This paper proposes a nonlinear panel data model which can generate endogenously both `weak' and `strong' cross-sectional dependence. The model's distinguishing characteristic is that a given agent's behaviour is influenced by an aggregation of the views or actions of those around them. The model allows for considerable flexibility in terms of the genesis of this herding or clustering type behaviour. At an econometric level, the model is shown to nest various extant dynamic panel data models. These include panel AR models, spatial models, which accommodate weak dependence only, and panel models where cross-sectional averages or factors exogenously generate strong, but not weak, cross sectional dependence. An important implication is that the appropriate model for the aggregate series becomes intrinsically nonlinear, due to the clustering behaviour, and thus requires the disaggregates to be simultaneously considered with the aggregate. We provide the associated asymptotic theory for estimation and inference. This is supplemented with Monte Carlo studies and two empirical applications which indicate the utility of our proposed model as both a structural and reduced form vehicle to model different types of cross-sectional dependence, including evolving clusters.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Dr. James Mitchell, 2010. "A Nonlinear Panel Data Model of Cross-sectional Dependence," National Institute of Economic and Social Research (NIESR) Discussion Papers 370, National Institute of Economic and Social Research.
  • Handle: RePEc:nsr:niesrd:370
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gilboa, Itzhak & Lieberman, Offer & Schmeidler, David, 2011. "A similarity-based approach to prediction," Journal of Econometrics, Elsevier, vol. 162(1), pages 124-131, May.
    2. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    3. Chudik, Alexander & Pesaran, M. Hashem, 2011. "Infinite-dimensional VARs and factor models," Journal of Econometrics, Elsevier, vol. 163(1), pages 4-22, July.
    4. George A. Akerlof, 2009. "How Human Psychology Drives the Economy and Why It Matters," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 91(5), pages 1175-1175.
    5. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    6. Richard W. Sias, 2004. "Institutional Herding," The Review of Financial Studies, Society for Financial Studies, vol. 17(1), pages 165-206.
    7. Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2012. "Empirical Similarity," World Scientific Book Chapters, in: Case-Based Predictions An Axiomatic Approach to Prediction, Classification and Statistical Learning, chapter 9, pages 211-243, World Scientific Publishing Co. Pte. Ltd..
    8. Bikhchandani, Sushil & Hirshleifer, David & Welch, Ivo, 1992. "A Theory of Fads, Fashion, Custom, and Cultural Change in Informational Cascades," Journal of Political Economy, University of Chicago Press, vol. 100(5), pages 992-1026, October.
    9. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
    10. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    11. Devenow, Andrea & Welch, Ivo, 1996. "Rational herding in financial economics," European Economic Review, Elsevier, vol. 40(3-5), pages 603-615, April.
    12. Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2012. "On the Definition of Objective Probabilities by Empirical Similarity," World Scientific Book Chapters, in: Case-Based Predictions An Axiomatic Approach to Prediction, Classification and Statistical Learning, chapter 11, pages 259-280, World Scientific Publishing Co. Pte. Ltd..
    13. Gayer Gabrielle & Gilboa Itzhak & Lieberman Offer, 2007. "Rule-Based and Case-Based Reasoning in Housing Prices," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 7(1), pages 1-37, April.
    14. Narasimhan Jegadeesh & Woojin Kim, 2010. "Do Analysts Herd? An Analysis of Recommendations and Market Reactions," The Review of Financial Studies, Society for Financial Studies, vol. 23(2), pages 901-937, February.
    15. Yu, Ping, 2012. "Likelihood estimation and inference in threshold regression," Journal of Econometrics, Elsevier, vol. 167(1), pages 274-294.
    16. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    17. Trueman, Brett, 1994. "Analyst Forecasts and Herding Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 7(1), pages 97-124.
    18. Snehal Banerjee & Ron Kaniel & Ilan Kremer, 2009. "Price Drift as an Outcome of Differences in Higher-Order Beliefs," The Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3707-3734, September.
    19. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 269-298.
    20. Souleles, Nicholas S, 2004. "Expectations, Heterogeneous Forecast Errors, and Consumption: Micro Evidence from the Michigan Consumer Sentiment Surveys," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(1), pages 39-72, February.
    21. Roger E. A. Farmer, 2009. "Animal Spirits: How Human Psychology Drives the Economy, and Why it Matters for Global Capitalism," The Economic Record, The Economic Society of Australia, vol. 85(270), pages 357-358, September.
    22. Gonzalo, Jesus & Wolf, Michael, 2005. "Subsampling inference in threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 127(2), pages 201-224, August.
    23. David Hirshleifer & Siew Hong Teoh, 2003. "Herd Behaviour and Cascading in Capital Markets: a Review and Synthesis," European Financial Management, European Financial Management Association, vol. 9(1), pages 25-66, March.
    24. Offer Lieberman, 2012. "A similarity‐based approach to time‐varying coefficient non‐stationary autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 484-502, May.
    25. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    26. Korniotis, George M., 2010. "Estimating Panel Models With Internal and External Habit Formation," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 145-158.
    27. Tweedie, Richard L., 1975. "Sufficient conditions for ergodicity and recurrence of Markov chains on a general state space," Stochastic Processes and their Applications, Elsevier, vol. 3(4), pages 385-403, October.
    28. T. S. Breusch & A. R. Pagan, 1980. "The Lagrange Multiplier Test and its Applications to Model Specification in Econometrics," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 47(1), pages 239-253.
    29. Chevillon, Guillaume & Massmann, Michael & Mavroeidis, Sophocles, 2010. "Inference in models with adaptive learning," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 341-351, April.
    30. Timmermann, Allan, 1994. "Can Agents Learn to Form Rational Expectations? Some Results on Convergence and Stability of Learning in the UK Stock Market," Economic Journal, Royal Economic Society, vol. 104(425), pages 777-797, July.
    31. Snehal Banerjee & Ilan Kremer, 2010. "Disagreement and Learning: Dynamic Patterns of Trade," Journal of Finance, American Finance Association, vol. 65(4), pages 1269-1302, August.
    32. Lieberman, Offer, 2010. "Asymptotic Theory For Empirical Similarity Models," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1032-1059, August.
    33. Timo Teräsvirta & Chien‐Fu Lin & Clive W. J. Granger, 1993. "Power Of The Neural Network Linearity Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(2), pages 209-220, March.
    34. George Kapetanios, 2001. "Model Selection in Threshold Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 22(6), pages 733-754, November.
    35. Gregory, Allan W & Smith, Gregor W & Yetman, James, 2001. "Testing for Forecast Consensus," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 34-43, January.
    36. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    37. Abhijit V. Banerjee, 1992. "A Simple Model of Herd Behavior," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 107(3), pages 797-817.
    38. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafiq, Shuddhasattwa & Salim, Ruhul & Nielsen, Ingrid, 2016. "Urbanization, openness, emissions, and energy intensity: A study of increasingly urbanized emerging economies," Energy Economics, Elsevier, vol. 56(C), pages 20-28.
    2. Shuddhasattwa Rafiq & Ruhul Salim & Pasquale M Sgro, 2018. "Energy, unemployment and trade," Applied Economics, Taylor & Francis Journals, vol. 50(47), pages 5122-5134, October.
    3. Erik Frohm & Vanessa Gunnella, 2021. "Spillovers in global production networks," Review of International Economics, Wiley Blackwell, vol. 29(3), pages 663-680, August.
    4. Kapetanios, G. & Mitchell, J. & Price, S. & Fawcett, N., 2015. "Generalised density forecast combinations," Journal of Econometrics, Elsevier, vol. 188(1), pages 150-165.
    5. Orea, Luis & Álvarez, Inmaculada C., 2019. "A new stochastic frontier model with cross-sectional effects in both noise and inefficiency terms," Journal of Econometrics, Elsevier, vol. 213(2), pages 556-577.
    6. Eunju Hwang & Dong Wan Shin, 2017. "Stationary bootstrapping for common mean change detection in cross-sectionally dependent panels," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(6), pages 767-787, November.
    7. Chakraborty, Saptorshee Kanto & Mazzanti, Massimiliano, 2021. "Renewable electricity and economic growth relationship in the long run: Panel data econometric evidence from the OECD," Structural Change and Economic Dynamics, Elsevier, vol. 59(C), pages 330-341.
    8. Sinem Hacıoğlu Hoke & George Kapetanios, 2021. "Common correlated effect cross‐sectional dependence corrections for nonlinear conditional mean panel models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(1), pages 125-150, January.
    9. Yang, Qin & Du, Qiang & Razzaq, Asif & Shang, Yunfeng, 2022. "How volatility in green financing, clean energy, and green economic practices derive sustainable performance through ESG indicators? A sectoral study of G7 countries," Resources Policy, Elsevier, vol. 75(C).
    10. Efthymios G. Tsionas & Panayotis G. Michaelides, 2016. "A Spatial Stochastic Frontier Model with Spillovers: Evidence for Italian Regions," Scottish Journal of Political Economy, Scottish Economic Society, vol. 63(3), pages 243-257, July.
    11. Gunnella, Vanessa & Al-Haschimi, Alexander & Benkovskis, Konstantins & Chiacchio, Francesco & de Soyres, François & Di Lupidio, Benedetta & Fidora, Michael & Franco-Bedoya, Sebastian & Frohm, Erik & G, 2019. "The impact of global value chains on the euro area economy," Occasional Paper Series 221, European Central Bank.
    12. Tong, Howell, 2015. "Threshold models in time series analysis—Some reflections," Journal of Econometrics, Elsevier, vol. 189(2), pages 485-491.
    13. Shuddhasattwa Rafiq & Ruhul Salim & Nicholas Apergis, 2016. "Agriculture, trade openness and emissions: an empirical analysis and policy options," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(3), pages 348-365, July.
    14. Frohm, Erik & Gunnella, Vanessa, 2017. "Sectoral interlinkages in global value chains: spillovers and network effects," Working Paper Series 2064, European Central Bank.
    15. Hacioglu Hoke, Sinem & Kapetanios, George, 2017. "Common correlated effect cross-sectional dependence corrections for non-linear conditional mean panel models," Bank of England working papers 683, Bank of England.
    16. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wrk:wrkemf:03 is not listed on IDEAS
    2. George Kapetanios & James Mitchell & Yongcheol Shin, 2010. "A Nonlinear Panel Model of Cross-sectional Dependence," Working Papers 673, Queen Mary University of London, School of Economics and Finance.
    3. Hirshleifer, David & Teoh, Siew Hong, 2008. "Thought and Behavior Contagion in Capital Markets," MPRA Paper 9164, University Library of Munich, Germany.
    4. Puput Tri Komalasari & Marwan Asri & Bernardinus M. Purwanto & Bowo Setiyono, 2022. "Herding behaviour in the capital market: What do we know and what is next?," Management Review Quarterly, Springer, vol. 72(3), pages 745-787, September.
    5. Bizer, Kilian & Meub, Lukas & Proeger, Till & Spiwoks, Markus, 2014. "Strategic coordination in forecasting: An experimental study," University of Göttingen Working Papers in Economics 195, University of Goettingen, Department of Economics.
    6. Cai, Fang & Han, Song & Li, Dan & Li, Yi, 2019. "Institutional herding and its price impact: Evidence from the corporate bond market," Journal of Financial Economics, Elsevier, vol. 131(1), pages 139-167.
    7. Caglayan, Mustafa & Talavera, Oleksandr & Zhang, Wei, 2021. "Herding behaviour in P2P lending markets," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 27-41.
    8. Gavriilidis, Konstantinos & Kallinterakis, Vasileios & Ferreira, Mario Pedro Leite, 2013. "Institutional industry herding: Intentional or spurious?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 26(C), pages 192-214.
    9. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    10. Wang, Hailong & Hu, Duni, 2021. "Heterogeneous beliefs with herding behaviors and asset pricing in two goods world," The North American Journal of Economics and Finance, Elsevier, vol. 57(C).
    11. Muskan Sachdeva & Ritu Lehal & Sanjay Gupta & Aashish Garg, 2021. "What make investors herd while investing in the Indian stock market? A hybrid approach," Review of Behavioral Finance, Emerald Group Publishing Limited, vol. 15(1), pages 19-37, September.
    12. Pegah Dehghani & Ros Zam Zam Sapian, 2014. "Sectoral herding behavior in the aftermarket of Malaysian IPOs," Venture Capital, Taylor & Francis Journals, vol. 16(3), pages 227-246, July.
    13. Guney, Yilmaz & Kallinterakis, Vasileios & Komba, Gabriel, 2017. "Herding in frontier markets: Evidence from African stock exchanges," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 47(C), pages 152-175.
    14. I. Koetsier & J.A. Bikker, 2017. "Herding behaviour of Dutch pension funds in sovereign bond investments," Working Papers 17-15, Utrecht School of Economics.
    15. Boortz, Christopher & Kremer, Stephanie & Jurkatis, Simon & Nautz, Dieter, 2014. "Information risk, market stress and institutional herding in financial markets: New evidence through the lens of a simulated model," SFB 649 Discussion Papers 2014-029, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    16. Galariotis, Emilios C. & Rong, Wu & Spyrou, Spyros I., 2015. "Herding on fundamental information: A comparative study," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 589-598.
    17. Shi, Guiqiang & Shen, Dehua & Zhu, Zhaobo, 2024. "Herding towards carbon neutrality: The role of investor attention," International Review of Financial Analysis, Elsevier, vol. 91(C).
    18. Alexander Chudik & M. Hashem Pesaran, 2013. "Large panel data models with cross-sectional dependence: a survey," Globalization Institute Working Papers 153, Federal Reserve Bank of Dallas.
    19. Kajal Lahiri & Fushang Liu, 2006. "Modelling multi‐period inflation uncertainty using a panel of density forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(8), pages 1199-1219, December.
    20. Akgun, Oguzhan & Pirotte, Alain & Urga, Giovanni, 2020. "Forecasting using heterogeneous panels with cross-sectional dependence," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1211-1227.
    21. Castagnetti, Carolina & Rossi, Eduardo & Trapani, Lorenzo, 2019. "A two-stage estimator for heterogeneous panel models with common factors," Econometrics and Statistics, Elsevier, vol. 11(C), pages 63-82.

    More about this item

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nsr:niesrd:370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Library & Information Manager (email available below). General contact details of provider: https://edirc.repec.org/data/niesruk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.