IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v37y2021i2p634-646.html
   My bibliography  Save this article

Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts

Author

Listed:
  • Clements, Michael P.

Abstract

If ‘learning by doing’ is important for macro-forecasting, newcomers might be different from regular, established participants. Stayers may also differ from the soon-to-leave. We test these conjectures for macro-forecasters’ point predictions of output growth and inflation, and for their histogram forecasts. Histogram forecasts of inflation by both joiners and leavers are found to be less accurate, especially if we suppose that joiners take time to learn. For GDP growth, there is no evidence of differences between the groups in terms of histogram forecast accuracy, although GDP point forecasts by leavers are less accurate. These findings are predicated on forecasters being homogeneous within groups. Allowing for individual fixed effects suggests fewer differences, including leavers’ inflation histogram forecasts being no less accurate.

Suggested Citation

  • Clements, Michael P., 2021. "Do survey joiners and leavers differ from regular participants? The US SPF GDP growth and inflation forecasts," International Journal of Forecasting, Elsevier, vol. 37(2), pages 634-646.
  • Handle: RePEc:eee:intfor:v:37:y:2021:i:2:p:634-646
    DOI: 10.1016/j.ijforecast.2020.08.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207020301187
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2020.08.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ottaviani, Marco & Sorensen, Peter Norman, 2006. "The strategy of professional forecasting," Journal of Financial Economics, Elsevier, vol. 81(2), pages 441-466, August.
    2. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    3. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    4. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    5. Engelberg, Joseph & Manski, Charles F. & Williams, Jared, 2009. "Comparing the Point Predictions and Subjective Probability Distributions of Professional Forecasters," Journal of Business & Economic Statistics, American Statistical Association, vol. 27, pages 30-41.
    6. Raffaella Giacomini & Barbara Rossi, 2009. "Detecting and Predicting Forecast Breakdowns," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 669-705.
    7. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    8. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    9. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    10. Antonello D’Agostino & Kieran Mcquinn & Karl Whelan, 2012. "Are Some Forecasters Really Better Than Others?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(4), pages 715-732, June.
    11. Boero, Gianna & Smith, Jeremy & Wallis, Kenneth F., 2011. "Scoring rules and survey density forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 379-393.
    12. Batchelor, Roy, 2007. "Bias in macroeconomic forecasts," International Journal of Forecasting, Elsevier, vol. 23(2), pages 189-203.
    13. Michael P. Clements, 2020. "Are Some Forecasters’ Probability Assessments of Macro Variables Better Than Those of Others?," Econometrics, MDPI, vol. 8(2), pages 1-16, May.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Michael P. Clements, 2014. "Forecast Uncertainty- Ex Ante and Ex Post : U.S. Inflation and Output Growth," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(2), pages 206-216, April.
    16. Rich, Robert W & Butler, J S, 1998. "Disagreement as a Measure of Uncertainty: A Comment on Bomberger," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 30(3), pages 411-419, August.
    17. Geoff Kenny & Thomas Kostka & Federico Masera, 2014. "How Informative are the Subjective Density Forecasts of Macroeconomists?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(3), pages 163-185, April.
    18. Roy Batchelor, 2007. "Forecaster Behaviour and Bias in Macroeconomic Forecasts," ifo Working Paper Series 39, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    19. Olivier Coibion & Yuriy Gorodnichenko, 2015. "Information Rigidity and the Expectations Formation Process: A Simple Framework and New Facts," American Economic Review, American Economic Association, vol. 105(8), pages 2644-2678, August.
    20. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    21. Marco Ottaviani & Peter Norman Sørensen, 2006. "Reputational cheap talk," RAND Journal of Economics, RAND Corporation, vol. 37(1), pages 155-175, March.
    22. Nordhaus, William D, 1987. "Forecasting Efficiency: Concepts and Applications," The Review of Economics and Statistics, MIT Press, vol. 69(4), pages 667-674, November.
    23. Joseph Engelberg & Charles F. Manski & Jared Williams, 2011. "Assessing the temporal variation of macroeconomic forecasts by a panel of changing composition," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(7), pages 1059-1078, November.
    24. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    25. Clements, Michael P. & Galvão, Ana Beatriz, 2017. "Model and survey estimates of the term structure of US macroeconomic uncertainty," International Journal of Forecasting, Elsevier, vol. 33(3), pages 591-604.
    26. Bomberger, William A, 1996. "Disagreement as a Measure of Uncertainty," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 28(3), pages 381-392, August.
    27. Sylvain Leduc & Keith Sill, 2013. "Expectations and Economic Fluctuations: An Analysis Using Survey Data," The Review of Economics and Statistics, MIT Press, vol. 95(4), pages 1352-1367, October.
    28. Bonham, Carl S & Cohen, Richard H, 2001. "To Aggregate, Pool, or Neither: Testing the Rational-Expectations Hypothesis Using Survey Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 278-291, July.
    29. Ulrike Malmendier & Stefan Nagel, 2016. "Learning from Inflation Experiences," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(1), pages 53-87.
    30. Raffaella Giacomini & Barbara Rossi, 2010. "Forecast comparisons in unstable environments," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
    31. Carlos Capistrán & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2‐3), pages 365-396, March.
    32. repec:wrk:wrkemf:31 is not listed on IDEAS
    33. Dean Croushore, 1993. "Introducing: the survey of professional forecasters," Business Review, Federal Reserve Bank of Philadelphia, issue Nov, pages 3-15.
    34. Lahiri, Kajal & Sheng, Xuguang, 2008. "Evolution of forecast disagreement in a Bayesian learning model," Journal of Econometrics, Elsevier, vol. 144(2), pages 325-340, June.
    35. Kajal Lahiri & Xuguang Sheng, 2010. "Measuring forecast uncertainty by disagreement: The missing link," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 514-538.
    36. Robert Rich & Joseph Tracy, 2010. "The Relationships among Expected Inflation, Disagreement, and Uncertainty: Evidence from Matched Point and Density Forecasts," The Review of Economics and Statistics, MIT Press, vol. 92(1), pages 200-207, February.
    37. Zarnowitz, Victor, 1985. "Rational Expectations and Macroeconomic Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 3(4), pages 293-311, October.
    38. Patton, Andrew J. & Timmermann, Allan, 2010. "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion," Journal of Monetary Economics, Elsevier, vol. 57(7), pages 803-820, October.
    39. Zarnowitz, Victor & Lambros, Louis A, 1987. "Consensus and Uncertainty in Economic Prediction," Journal of Political Economy, University of Chicago Press, vol. 95(3), pages 591-621, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anis Ochi & Yosra Saidi & Mohamed Ali Labidi, 2023. "Non-linear Threshold Effect of Governance Quality on Economic Growth in African Countries: Evidence from Panel Smooth Transition Regression Approach," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 14(4), pages 4707-4729, December.
    2. Hana Braitsch & James Mitchell & Taylor Shiroff, 2024. "Practice Makes Perfect: Learning Effects with Household Point and Density Forecasts of Inflation," Working Papers 24-25, Federal Reserve Bank of Cleveland.
    3. Klein, Tony, 2021. "Agree to Disagree? Predictions of U.S. Nonfarm Payroll Changes between 2008 and 2020 and the Impact of the COVID19 Labor Shock," QBS Working Paper Series 2021/07, Queen's University Belfast, Queen's Business School.
    4. Toshitaka Sekine & Frank Packer & Shunichi Yoneyama, 2022. "Individual Trend Inflation," IMES Discussion Paper Series 22-E-14, Institute for Monetary and Economic Studies, Bank of Japan.
    5. Michael P. Clements, 2020. "Are Some Forecasters’ Probability Assessments of Macro Variables Better Than Those of Others?," Econometrics, MDPI, vol. 8(2), pages 1-16, May.
    6. Klein, Tony, 2022. "Agree to disagree? Predictions of U.S. nonfarm payroll changes between 2008 and 2020 and the impact of the COVID19 labor shock," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 264-286.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael P. Clements, 2022. "Forecaster Efficiency, Accuracy, and Disagreement: Evidence Using Individual‐Level Survey Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(2-3), pages 537-568, March.
    2. Clements, Michael P., 2019. "Do forecasters target first or later releases of national accounts data?," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1240-1249.
    3. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    4. Conrad, Christian & Lahiri, Kajal, 2023. "Heterogeneous expectations among professional forecasters," ZEW Discussion Papers 23-062, ZEW - Leibniz Centre for European Economic Research.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Conrad, Christian & Lahiri, Kajal, 2024. "Heterogeneous Expectations among Professional Forecasters," Working Papers 0754, University of Heidelberg, Department of Economics.
    7. Michael Clements, 2016. "Are Macro-Forecasters Essentially The Same? An Analysis of Disagreement, Accuracy and Efficiency," ICMA Centre Discussion Papers in Finance icma-dp2016-08, Henley Business School, University of Reading.
    8. Clements, Michael P, 2012. "Subjective and Ex Post Forecast Uncertainty : US Inflation and Output Growth," The Warwick Economics Research Paper Series (TWERPS) 995, University of Warwick, Department of Economics.
    9. Constantin Burgi, 2016. "What Do We Lose When We Average Expectations?," Working Papers 2016-013, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
    10. Michael P. Clements, 2014. "US Inflation Expectations and Heterogeneous Loss Functions, 1968–2010," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 1-14, January.
    11. Clements, Michael P., 2006. "Internal consistency of survey respondentsíforecasts: Evidence based on the Survey of Professional Forecasters," Economic Research Papers 269742, University of Warwick - Department of Economics.
    12. Krüger, Fabian & Nolte, Ingmar, 2016. "Disagreement versus uncertainty: Evidence from distribution forecasts," Journal of Banking & Finance, Elsevier, vol. 72(S), pages 172-186.
    13. Benchimol, Jonathan & El-Shagi, Makram & Saadon, Yossi, 2022. "Do expert experience and characteristics affect inflation forecasts?," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 205-226.
    14. repec:zbw:bofrdp:037 is not listed on IDEAS
    15. Ambrocio, Gene, 2017. "The real effects of overconfidence and fundamental uncertainty shocks," Research Discussion Papers 37/2017, Bank of Finland.
    16. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    17. repec:zbw:bofrdp:2017_037 is not listed on IDEAS
    18. Alexander Glas & Matthias Hartmann, 2022. "Uncertainty measures from partially rounded probabilistic forecast surveys," Quantitative Economics, Econometric Society, vol. 13(3), pages 979-1022, July.
    19. Todd E. Clark & Gergely Ganics & Elmar Mertens, 2022. "What is the Predictive Value of SPF Point and Density Forecasts?," Working Papers 22-37, Federal Reserve Bank of Cleveland.
    20. Boskabadi, Elahe, 2022. "Economic policy uncertainty and forecast bias in the survey of professional forecasters," MPRA Paper 115081, University Library of Munich, Germany.
    21. Clements, Michael P., 2024. "Do professional forecasters believe in the Phillips curve?," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1238-1254.
    22. Klein, Tony, 2022. "Agree to disagree? Predictions of U.S. nonfarm payroll changes between 2008 and 2020 and the impact of the COVID19 labor shock," Journal of Economic Behavior & Organization, Elsevier, vol. 194(C), pages 264-286.

    More about this item

    Keywords

    Forecast accuracy; Experience; Learning by doing; Probability forecasts; Growth forecasts; Inflation forecasts;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:37:y:2021:i:2:p:634-646. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.