IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v65y2020ics0301420719305379.html
   My bibliography  Save this article

Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective

Author

Listed:
  • Rubaszek, Michał
  • Karolak, Zuzanna
  • Kwas, Marek

Abstract

We analyse the dynamics of real prices for main non-ferrous industrial metals: aluminium, copper, nickel and zinc. The estimates based on monthly data from 1980 to 2019 show that the prices are mean reverting and the pace of mean reversion is regime dependent. The results of the out-of-sample forecasting competition provide ample evidence that mean-reverting models deliver significantly better forecasts than the naive random walk. However, allowing for non-linearity by introducing threshold structure does not lead to further improvement in the quality of forecasts.

Suggested Citation

  • Rubaszek, Michał & Karolak, Zuzanna & Kwas, Marek, 2020. "Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 65(C).
  • Handle: RePEc:eee:jrpoli:v:65:y:2020:i:c:s0301420719305379
    DOI: 10.1016/j.resourpol.2019.101538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420719305379
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2019.101538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dooley, Gillian & Lenihan, Helena, 2005. "An assessment of time series methods in metal price forecasting," Resources Policy, Elsevier, vol. 30(3), pages 208-217, September.
    2. Ca’ Zorzi, Michele & Kolasa, Marcin & Rubaszek, Michał, 2017. "Exchange rate forecasting with DSGE models," Journal of International Economics, Elsevier, vol. 107(C), pages 127-146.
    3. Jan J. J. Groen & Paolo A. Pesenti, 2011. "Commodity Prices, Commodity Currencies, and Global Economic Developments," NBER Chapters, in: Commodity Prices and Markets, pages 15-42, National Bureau of Economic Research, Inc.
    4. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    5. repec:bla:jecsur:v:13:y:1999:i:5:p:551-76 is not listed on IDEAS
    6. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    7. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1145-1194.
    8. Sánchez Lasheras, Fernando & de Cos Juez, Francisco Javier & Suárez Sánchez, Ana & Krzemień, Alicja & Riesgo Fernández, Pedro, 2015. "Forecasting the COMEX copper spot price by means of neural networks and ARIMA models," Resources Policy, Elsevier, vol. 45(C), pages 37-43.
    9. Rossen, Anja, 2015. "What are metal prices like? Co-movement, price cycles and long-run trends," Resources Policy, Elsevier, vol. 45(C), pages 255-276.
    10. Chen, Jinyu & Zhu, Xuehong & Zhong, Meirui, 2019. "Nonlinear effects of financial factors on fluctuations in nonferrous metals prices: A Markov-switching VAR analysis," Resources Policy, Elsevier, vol. 61(C), pages 489-500.
    11. Fernandez, Viviana, 2017. "A historical perspective of the informational content of commodity futures," Resources Policy, Elsevier, vol. 51(C), pages 135-150.
    12. Shu-Ling Chen & John D. Jackson & Hyeongwoo Kim & Pramesti Resiandini, 2014. "What Drives Commodity Prices?," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 96(5), pages 1455-1468.
    13. Bruce Hansen, 1999. "Testing for Linearity," Journal of Economic Surveys, Wiley Blackwell, vol. 13(5), pages 551-576, December.
    14. Nguyen, Bao H. & Okimoto, Tatsuyoshi, 2019. "Asymmetric reactions of the US natural gas market and economic activity," Energy Economics, Elsevier, vol. 80(C), pages 86-99.
    15. Ine Van Robays, 2016. "Macroeconomic Uncertainty and Oil Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 671-693, October.
    16. Lyócsa, Štefan & Molnár, Peter & Todorova, Neda, 2017. "Volatility forecasting of non-ferrous metal futures: Covariances, covariates or combinations?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 51(C), pages 228-247.
    17. Harris, Richard D.F. & Shen, Jian, 2017. "The intrinsic value of gold: An exchange rate-free price index," Journal of International Money and Finance, Elsevier, vol. 79(C), pages 203-217.
    18. He, Kaijian & Lu, Xingjing & Zou, Yingchao & Keung Lai, Kin, 2015. "Forecasting metal prices with a curvelet based multiscale methodology," Resources Policy, Elsevier, vol. 45(C), pages 144-150.
    19. Lo, Ming Chien & Zivot, Eric, 2001. "Threshold Cointegration And Nonlinear Adjustment To The Law Of One Price," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 533-576, September.
    20. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    21. Baumeister, Christiane & Kilian, Lutz & Lee, Thomas K., 2014. "Are there gains from pooling real-time oil price forecasts?," Energy Economics, Elsevier, vol. 46(S1), pages 33-43.
    22. López-Suárez, Carlos Felipe & Rodríguez-López, José Antonio, 2011. "Nonlinear exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 30(5), pages 877-895, September.
    23. Gargano, Antonio & Timmermann, Allan, 2014. "Forecasting commodity price indexes using macroeconomic and financial predictors," International Journal of Forecasting, Elsevier, vol. 30(3), pages 825-843.
    24. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    25. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    26. Liu, Chang & Hu, Zhenhua & Li, Yan & Liu, Shaojun, 2017. "Forecasting copper prices by decision tree learning," Resources Policy, Elsevier, vol. 52(C), pages 427-434.
    27. Harvey, David I. & Leybourne, Stephen J. & Whitehouse, Emily J., 2017. "Forecast evaluation tests and negative long-run variance estimates in small samples," International Journal of Forecasting, Elsevier, vol. 33(4), pages 833-847.
    28. Akram, Q. Farooq, 2009. "Commodity prices, interest rates and the dollar," Energy Economics, Elsevier, vol. 31(6), pages 838-851, November.
    29. Buncic, Daniel & Moretto, Carlo, 2015. "Forecasting copper prices with dynamic averaging and selection models," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 1-38.
    30. Hansen,B.E., 1999. "Testing for linearity," Working papers 7, Wisconsin Madison - Social Systems.
    31. Roberts, Mark C., 2009. "Duration and characteristics of metal price cycles," Resources Policy, Elsevier, vol. 34(3), pages 87-102, September.
    32. Li, Gang & Li, Yong, 2015. "Forecasting copper futures volatility under model uncertainty," Resources Policy, Elsevier, vol. 46(P2), pages 167-176.
    33. Chen, Yanhui & He, Kaijian & Zhang, Chuan, 2016. "A novel grey wave forecasting method for predicting metal prices," Resources Policy, Elsevier, vol. 49(C), pages 323-331.
    34. Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
    35. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    36. Laura Coroneo & Fabrizio Iacone, 2015. "Comparing predictive accuracy in small samples," Discussion Papers 15/15, Department of Economics, University of York.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    2. Canepa, Alessandra & Zanetti Chini, Emilio & Alqaralleh, Huthaifa, 2023. "Modelling and Forecasting Energy Market Cycles: A Generalized Smooth Transition Approach," Department of Economics and Statistics Cognetti de Martiis. Working Papers 202318, University of Turin.
    3. Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2021. "Common factors and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 74(C).
    4. He, Zhichao & Huang, Jianhua, 2023. "A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction," Resources Policy, Elsevier, vol. 86(PB).
    5. Hardy, Nicolás & Ferreira, Tiago & Quinteros, Maria J. & Magner, Nicolás S., 2023. "“Watch your tone!”: Forecasting mining industry commodity prices with financial report tone," Resources Policy, Elsevier, vol. 86(PA).
    6. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
    7. Zuzanna Karolak, 2021. "Energy prices forecasting using nonlinear univariate models," Bank i Kredyt, Narodowy Bank Polski, vol. 52(6), pages 577-598.
    8. Choi, Insu & Kim, Woo Chang, 2024. "Practical forecasting of risk boundaries for industrial metals and critical minerals via statistical machine learning techniques," International Review of Financial Analysis, Elsevier, vol. 94(C).
    9. Shi, Tao & Li, Chongyang & Zhang, Wei & Zhang, Yi, 2023. "Forecasting on metal resource spot settlement price: New evidence from the machine learning model," Resources Policy, Elsevier, vol. 81(C).
    10. Marek Kwas & Michał Rubaszek, 2021. "Forecasting Commodity Prices: Looking for a Benchmark," Forecasting, MDPI, vol. 3(2), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2021. "Common factors and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 74(C).
    2. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    3. Pincheira, Pablo & Hardy, Nicolas, 2018. "Forecasting Base Metal Prices with Commodity Currencies," MPRA Paper 83564, University Library of Munich, Germany.
    4. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    5. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    6. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2021. "Economic drivers of commodity volatility: The case of copper," Resources Policy, Elsevier, vol. 73(C).
    7. Díaz, Juan D. & Hansen, Erwin & Cabrera, Gabriel, 2020. "A random walk through the trees: Forecasting copper prices using decision learning methods," Resources Policy, Elsevier, vol. 69(C).
    8. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2020. "Point and interval forecasting for metal prices based on variational mode decomposition and an optimized outlier-robust extreme learning machine," Resources Policy, Elsevier, vol. 69(C).
    9. Khoshalan, Hasel Amini & Shakeri, Jamshid & Najmoddini, Iraj & Asadizadeh, Mostafa, 2021. "Forecasting copper price by application of robust artificial intelligence techniques," Resources Policy, Elsevier, vol. 73(C).
    10. Pincheira, Pablo & Hardy, Nicolás, 2021. "Forecasting aluminum prices with commodity currencies," Resources Policy, Elsevier, vol. 73(C).
    11. Rubaszek Michal & Karolak Zuzanna & Kwas Marek & Uddin Gazi Salah, 2020. "The role of the threshold effect for the dynamics of futures and spot prices of energy commodities," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 24(5), pages 1-20, December.
    12. Tapia, Carlos & Coulton, Jeff & Saydam, Serkan, 2020. "Using entropy to assess dynamic behaviour of long-term copper price," Resources Policy, Elsevier, vol. 66(C).
    13. Bielak, Łukasz & Grzesiek, Aleksandra & Janczura, Joanna & Wyłomańska, Agnieszka, 2021. "Market risk factors analysis for an international mining company. Multi-dimensional, heavy-tailed-based modelling," Resources Policy, Elsevier, vol. 74(C).
    14. Becerra, Miguel & Jerez, Alejandro & Garcés, Hugo O. & Demarco, Rodrigo, 2022. "Copper price: A brief analysis of China’s impact over its short-term forecasting," Resources Policy, Elsevier, vol. 75(C).
    15. Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
    16. Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    17. Marek Kwas & Michał Rubaszek, 2021. "Forecasting Commodity Prices: Looking for a Benchmark," Forecasting, MDPI, vol. 3(2), pages 1-13, June.
    18. Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
    19. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    20. Pincheira, Pablo & Hardy, Nicolas, 2018. "The predictive relationship between exchange rate expectations and base metal prices," MPRA Paper 89423, University Library of Munich, Germany.

    More about this item

    Keywords

    Industrial metal prices; Forecasting; Autoregressive models; Threshold models;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:65:y:2020:i:c:s0301420719305379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.