A component GARCH model with time varying weights
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Bauwens Luc & Storti Giuseppe, 2009. "A Component GARCH Model with Time Varying Weights," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(2), pages 1-33, May.
- Giuseppe Storti & Luc Bauwens, 2006. "A component GARCH model with time varying weights," Computing in Economics and Finance 2006 388, Society for Computational Economics.
- BAUWENS, Luc & STORTI, Giuseppe, 2009. "A component GARCH model with time varying weights," LIDAM Reprints CORE 2125, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc, BAUWENS & G., STORTI, 2007. "A Component GARCH Model with Time Varying Weights," Discussion Papers (ECON - Département des Sciences Economiques) 2007012, Université catholique de Louvain, Département des Sciences Economiques.
References listed on IDEAS
- Marcucci Juri, 2005. "Forecasting Stock Market Volatility with Regime-Switching GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-55, December.
- Luc Bauwens & Arie Preminger & Jeroen V. K. Rombouts, 2010.
"Theory and inference for a Markov switching GARCH model,"
Econometrics Journal, Royal Economic Society, vol. 13(2), pages 218-244, July.
- Luc, BAUWENS & Arie, PREMINGER & Jeroen, ROMBOUTS, 2007. "Theory and inference for a Markov switching GARCH model," Discussion Papers (ECON - Département des Sciences Economiques) 2007033, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & PREMINGER, Arie & ROMBOUTS, Jeroen V.K., 2007. "Theory and inference for a Markov switching GARCH model," LIDAM Discussion Papers CORE 2007055, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2007. "Theory and Inference for a Markov-Switching GARCH Model," Cahiers de recherche 0733, CIRPEE.
- Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2007. "Theory and inference for a Markov switching Garch model," Cahiers de recherche 07-09, HEC Montréal, Institut d'économie appliquée.
- BAUWENS, Luc & PREMINGER, Arie & ROMBOUTS, Jeroen VK, 2010. "Theory and inference for a Markov switching Garch model," LIDAM Reprints CORE 2303, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Michel Lubrano, 1998.
"Bayesian inference on GARCH models using the Gibbs sampler,"
Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 23-46.
- Bauwens, L. & Lubrano, M., 1996. "Bayesian Inference on GARCH Models Using the Gibbs Sampler," G.R.E.Q.A.M. 96a21, Universite Aix-Marseille III.
- Bauwens, L. & Lubrano, M., 1998. "Bayesian inference on GARCH models using the Gibbs sampler," LIDAM Reprints CORE 1307, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENs, Luc & LUBRANO , Michel, 1996. "Bayesian Inference on GARCH Models using the Gibbs Sampler," LIDAM Discussion Papers CORE 1996027, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot & Sébastien Laurent, 2003.
"Value-at-risk for long and short trading positions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(6), pages 641-663.
- GIOT, Pierre & LAURENT, Sébastien, 2001. "Value-at-risk for long and short trading positions," LIDAM Discussion Papers CORE 2001022, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- GIOT, Pierre & LAURENT, Sébastien, 2003. "Value-at-Risk for long and short trading positions," LIDAM Reprints CORE 1707, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Pierre Giot and S»bastien Laurent, 2001. "Value-At-Risk For Long And Short Trading Positions," Computing in Economics and Finance 2001 94, Society for Computational Economics.
- Peter Christoffersen & Silvia Gonçalves, 2004. "Estimation Risk in Financial Risk Management," CIRANO Working Papers 2004s-15, CIRANO.
- Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
- LUBRANO, Michel, 1998.
"Smooth transition GARCH models: a Bayesian perspective,"
LIDAM Discussion Papers CORE
1998066, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Michel LUBRANO, 2001. "Smooth Transition Garch Models : a Baysian Perspective," Discussion Papers (REL - Recherches Economiques de Louvain) 2001032, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
- Lubrano, M., 1999. "Smooth Transition GARCH Models: a Bayesian perspective," G.R.E.Q.A.M. 99a49, Universite Aix-Marseille III.
- Acerbi, Carlo & Tasche, Dirk, 2002.
"On the coherence of expected shortfall,"
Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
- Carlo Acerbi & Dirk Tasche, 2001. "On the coherence of Expected Shortfall," Papers cond-mat/0104295, arXiv.org, revised May 2002.
- Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
- Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
- Thomas Mikosch & Catalin Starica, 2004. "Non-stationarities in financial time series, the long range dependence and the IGARCH effects," Econometrics 0412005, University Library of Munich, Germany.
- Gray, Stephen F., 1996.
"Modeling the conditional distribution of interest rates as a regime-switching process,"
Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
- Tom Doan, "undated". "RATS programs to replicate Gray's 1996 Regime Switching GARCH paper," Statistical Software Components RTZ00080, Boston College Department of Economics.
- Luc Bauwens & Sébastien Laurent, 2002.
"A New Class of Multivariate skew Densities, with Application to GARCH Models,"
Computing in Economics and Finance 2002
5, Society for Computational Economics.
- BAUWENS, Luc & LAURENT, Sébastien, 2002. "A new class of multivariate skew densities, with application to GARCH models," LIDAM Discussion Papers CORE 2002020, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Nelson, Daniel B., 1992. "Filtering and forecasting with misspecified ARCH models I : Getting the right variance with the wrong model," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 61-90.
- Maheu John, 2005. "Can GARCH Models Capture Long-Range Dependence?," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(4), pages 1-43, December.
- Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
- Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
- Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993.
"On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks,"
Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
- Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
- Robert F. Engle & Simone Manganelli, 2004.
"CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
- Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
- Robert Engle & Simone Manganelli, 2000. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Econometric Society World Congress 2000 Contributed Papers 0841, Econometric Society.
- Pascual, Lorenzo & Romo, Juan & Ruiz, Esther, 2006. "Bootstrap prediction for returns and volatilities in GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 50(9), pages 2293-2312, May.
- Lamoureux, Christopher G & Lastrapes, William D, 1990. "Persistence in Variance, Structural Change, and the GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(2), pages 225-234, April.
- Guidolin, Massimo & Timmermann, Allan, 2006.
"Term structure of risk under alternative econometric specifications,"
Journal of Econometrics, Elsevier, vol. 131(1-2), pages 285-308.
- Timmermann, Allan & Guidolin, Massimo, 2004. "Term Structure of Risk Under Alternative Econometric Specifications," CEPR Discussion Papers 4645, C.E.P.R. Discussion Papers.
- Massimo Guidolin & Allan Timmerman, 2005. "Term structure of risk under alternative econometric specifications," Working Papers 2005-001, Federal Reserve Bank of St. Louis.
- Luc Bauwens & Arie Preminger & Jeroen V.K. Rombouts, 2006.
"Regime switching GARCH models,"
Cahiers de recherche
06-08, HEC Montréal, Institut d'économie appliquée.
- Luc, BAUWENS & Arie, PREMINGER & Jeroen, ROMBOUTS, 2006. "Regime switching GARCH models," Discussion Papers (ECON - Département des Sciences Economiques) 2006006, Université catholique de Louvain, Département des Sciences Economiques.
- BAUWENS, Luc & PREMINGER, Arie & ROMBOUTS, Jeroen, 2006. "Regime switching GARCH models," LIDAM Discussion Papers CORE 2006011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Robert F. Engle & Jose Gonzalo Rangel, 2005. "The Spline GARCH Model for Unconditional Volatility and its Global Macroeconomic Causes," Working Papers 2005/13, Czech National Bank.
- Baillie, Richard T. & Bollerslev, Tim, 1992.
"Prediction in dynamic models with time-dependent conditional variances,"
Journal of Econometrics, Elsevier, vol. 52(1-2), pages 91-113.
- Baillie, R.T. & Bollerslev, R.T., 1990. "Prediction In Dynamic Models With Time Dependent Conditional Variances," Papers 8815, Michigan State - Econometrics and Economic Theory.
- Hamilton, James D. & Susmel, Raul, 1994.
"Autoregressive conditional heteroskedasticity and changes in regime,"
Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
- Tom Doan, "undated". "RATS programs to estimate Hamilton-Susmel Markov Switching ARCH model," Statistical Software Components RTZ00083, Boston College Department of Economics.
- Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
- Thomas Mikosch & Cătălin Stărică, 2004. "Nonstationarities in Financial Time Series, the Long-Range Dependence, and the IGARCH Effects," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 378-390, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
- Grassi, Stefano & Santucci de Magistris, Paolo, 2015.
"It's all about volatility of volatility: Evidence from a two-factor stochastic volatility model,"
Journal of Empirical Finance, Elsevier, vol. 30(C), pages 62-78.
- Stefano Grassi & Paolo Santucci de Magistris, 2013. "It’s all about volatility (of volatility): evidence from a two-factor stochastic volatility model," CREATES Research Papers 2013-03, Department of Economics and Business Economics, Aarhus University.
- Stefano Grassi & Paolo Santucci de Magistris, 2013. "It's all about volatility of volatility: evidence from a two-factor stochastic volatility model," Studies in Economics 1404, School of Economics, University of Kent.
- Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2009.
"Asymmetric multivariate normal mixture GARCH,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2129-2154, April.
- Haas, Markus & Mittnik, Stefan & Paolella, Marc S., 2008. "Asymmetric multivariate normal mixture GARCH," CFS Working Paper Series 2008/07, Center for Financial Studies (CFS).
- Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013.
"Stable mixture GARCH models,"
Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
- Simon A. BRODA & Markus HAAS & Jochen KRAUSE & Marc S. PAOLELLA & Sven C. STEUDE, 2011. "Stable Mixture GARCH Models," Swiss Finance Institute Research Paper Series 11-39, Swiss Finance Institute.
- Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2016.
"Macro-Finance Determinants of the Long-Run Stock–Bond Correlation: The DCC-MIDAS Specification,"
Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 617-642.
- Asgharian, Hossein & Christiansen, Charlotte & Hou, Ai Jun, 2014. "Macro-Finance Determinants of the Long-Run Stock-Bond Correlation: The DCC-MIDAS Specification," Working Papers 2014:37, Lund University, Department of Economics.
- Hossein Asgharian & Charlotte Christiansen & Ai Jun Hou, 2014. "Macro-Finance Determinants of the Long-Run Stock-Bond Correlation: The DCC-MIDAS Specification," CREATES Research Papers 2014-13, Department of Economics and Business Economics, Aarhus University.
- Pietro Coretto & Michele La Rocca & Giuseppe Storti, 2020. "Improving Many Volatility Forecasts Using Cross-Sectional Volatility Clusters," JRFM, MDPI, vol. 13(4), pages 1-23, March.
- BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011.
"Volatility models,"
LIDAM Discussion Papers CORE
2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Jamal Bouoiyour & Refk Selmi, 2014.
"Commodity price uncertainty and manufactured exports in Morocco and Tunisia: Some insights from a novel GARCH model,"
Economics Bulletin, AccessEcon, vol. 34(1), pages 220-233.
- Bouoiyour, Jamal & Selmi, Refk, 2013. "Commodity Price Uncertainty and Manufactured Exports in Morocco and Tunisia: Some Insights from a Novel GARCH Model," MPRA Paper 53412, University Library of Munich, Germany, revised Nov 2013.
- Jamal Bouoiyour & Refk Selmi, 2014. "Commodity price uncertainty and manufactured exports in Morocco and Tunisia: Some insights from a novel GARCH model," Post-Print hal-01879687, HAL.
- Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013.
"Multivariate Volatility Modeling Of Electricity Futures,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
- Bauwens, Luc & Hafner, Christian M. & Pierret, Diane, 2011. "Multivariate volatility modeling of electricity futures," SFB 649 Discussion Papers 2011-063, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- BAUWENS, Luc & HAFNER, Christian M. & PIERRET, Diane, 2013. "Multivariate volatility modeling of electricity futures," LIDAM Reprints CORE 2526, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- BAUWENS, Luc & HAFNER, Christian & pierret, Diane, 2011. "Multivariate volatility modeling of electricity futures," LIDAM Discussion Papers CORE 2011011, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bauwens, L. & Hafner, C. & Pierret, D., 2011. "Multivariate volatility modeling of electricity futures," LIDAM Discussion Papers ISBA 2011013, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Boudt, Kris & Daníelsson, Jón & Laurent, Sébastien, 2013. "Robust forecasting of dynamic conditional correlation GARCH models," International Journal of Forecasting, Elsevier, vol. 29(2), pages 244-257.
- Boudt, Kris & Croux, Christophe, 2010. "Robust M-estimation of multivariate GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2459-2469, November.
- Piotr Fiszeder & Marta Ma³ecka, 2022. "Forecasting volatility during the outbreak of Russian invasion of Ukraine: application to commodities, stock indices, currencies, and cryptocurrencies," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 17(4), pages 939-967, December.
- Nikolaos A. Kyriazis, 2021. "A Survey on Volatility Fluctuations in the Decentralized Cryptocurrency Financial Assets," JRFM, MDPI, vol. 14(7), pages 1-46, June.
- Bouoiyour, Jamal & Selmi, Refk, 2013. "The controversial link between exchange rate volatility and exports: Evidence from Tunisian case," MPRA Paper 49133, University Library of Munich, Germany, revised Mar 2013.
- Fang, Tong & Lee, Tae-Hwy & Su, Zhi, 2020.
"Predicting the long-term stock market volatility: A GARCH-MIDAS model with variable selection,"
Journal of Empirical Finance, Elsevier, vol. 58(C), pages 36-49.
- Tong Fang & Tae-Hwy Lee & Zhi Su, 2020. "Predicting the Long-term Stock Market Volatility: A GARCH-MIDAS Model with Variable Selection," Working Papers 202009, University of California at Riverside, Department of Economics.
- Alessandra Amendola & Vincenzo Candila & Antonio Scognamillo, 2017.
"On the influence of US monetary policy on crude oil price volatility,"
Empirical Economics, Springer, vol. 52(1), pages 155-178, February.
- Amendola, Alessandra & Candila, Vincenzo & Scognamillo, Antonio, 2015. "On the influence of the U.S. monetary policy on the crude oil price volatility," 2015 Fourth Congress, June 11-12, 2015, Ancona, Italy 207860, Italian Association of Agricultural and Applied Economics (AIEAA).
- N. Alemohammad & S. Rezakhah & S. H. Alizadeh, 2020. "Markov switching asymmetric GARCH model: stability and forecasting," Statistical Papers, Springer, vol. 61(3), pages 1309-1333, June.
- Bouoiyour, Jamal & Selmi, Refk, 2013. "Nonlinearities and the nexus between inflation and inflation uncertainty in Egypt: New evidence from wavelets transform framework," MPRA Paper 52414, University Library of Munich, Germany.
- Jamal Bouoiyour & Refk Selmi, 2016. "Bitcoin: a beginning of a new phase?," Economics Bulletin, AccessEcon, vol. 36(3), pages 1430-1440.
- Becker Ralf & Clements Adam E & Hurn Stan, 2011. "Semi-Parametric Forecasting of Realized Volatility," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 15(3), pages 1-23, May.
- Henryk Gurgul & Roland Mestel & Robert Syrek, 2017. "MIDAS models in banking sector – systemic risk comparison," Managerial Economics, AGH University of Science and Technology, Faculty of Management, vol. 18(2), pages 165-181.
- Bouoiyour, Jamal & Miftah, Amal & Selmi, Refk, 2014. "Do Financial Flows raise or reduce Economic growth Volatility? Some Lessons from Moroccan case," MPRA Paper 57258, University Library of Munich, Germany.
- Bouoiyour, Jamal & Selmi, Refk, 2015. "Bitcoin Price: Is it really that New Round of Volatility can be on way?," MPRA Paper 65580, University Library of Munich, Germany.
- Mobarek, Asma & Muradoglu, Gulnur & Mollah, Sabur & Hou, Ai Jun, 2016. "Determinants of time varying co-movements among international stock markets during crisis and non-crisis periods," Journal of Financial Stability, Elsevier, vol. 24(C), pages 1-11.
- Amendola, Alessandra & Candila, Vincenzo & Gallo, Giampiero M., 2019. "On the asymmetric impact of macro–variables on volatility," Economic Modelling, Elsevier, vol. 76(C), pages 135-152.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ardia, David & Bluteau, Keven & Boudt, Kris & Catania, Leopoldo, 2018. "Forecasting risk with Markov-switching GARCH models:A large-scale performance study," International Journal of Forecasting, Elsevier, vol. 34(4), pages 733-747.
- Haas Markus, 2010. "Skew-Normal Mixture and Markov-Switching GARCH Processes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(4), pages 1-56, September.
- Kuang-Liang Chang, 2011. "The optimal value-at-risk hedging strategy under bivariate regime switching ARCH framework," Applied Economics, Taylor & Francis Journals, vol. 43(21), pages 2627-2640.
- Bildirici, Melike & Ersin, Özgür, 2012. "Nonlinear volatility models in economics: smooth transition and neural network augmented GARCH, APGARCH, FIGARCH and FIAPGARCH models," MPRA Paper 40330, University Library of Munich, Germany, revised May 2012.
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
- Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016.
"Efficient Gibbs sampling for Markov switching GARCH models,"
Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
- Monica Billio & Roberto Casarin & Anthony Osuntuyi, 2012. "Efficient Gibbs Sampling for Markov Switching GARCH Models," Working Papers 2012:35, Department of Economics, University of Venice "Ca' Foscari".
- Bauwens, Luc & Dufays, Arnaud & Rombouts, Jeroen V.K., 2014.
"Marginal likelihood for Markov-switching and change-point GARCH models,"
Journal of Econometrics, Elsevier, vol. 178(P3), pages 508-522.
- Luc Luc & Arnaud Dufays & Jeroen V.K. Rombouts, 2011. "Marginal Likelihood for Markov-switching and Change-point Garch Models," CREATES Research Papers 2011-41, Department of Economics and Business Economics, Aarhus University.
- BAUWENS, Luc & DUFAYS, Arnaud & ROMBOUTS, Jeroen V.K., 2014. "Marginal likelihood for Markov-switching and change-point GARCH models," LIDAM Reprints CORE 2533, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Arnaud Dufays & Jeroen Rombouts, 2011. "Marginal Likelihood for Markov-Switching and Change-Point Garch Models," CIRANO Working Papers 2011s-72, CIRANO.
- BAUWENS, Luc & DUFAYS, Arnaud & ROMBOUTS, Jeroen V.K., 2011. "Marginal likelihood for Markov-switching and change-point GARCH models," LIDAM Discussion Papers CORE 2011013, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Luc Bauwens & Arnaud Dufays & Jeroen V.K. Rombouts, 2011. "Marginal Likelihood for Markov-Switching and Change-Point GARCH Models," Cahiers de recherche 1138, CIRPEE.
- Aloui, Chaker & Hamida, Hela ben, 2014. "Modelling and forecasting value at risk and expected shortfall for GCC stock markets: Do long memory, structural breaks, asymmetry, and fat-tails matter?," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 349-380.
- Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
- Caporale, Guglielmo Maria & Zekokh, Timur, 2019.
"Modelling volatility of cryptocurrencies using Markov-Switching GARCH models,"
Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
- Guglielmo Maria Caporale & Timur Zekokh, 2018. "Modelling Volatility of Cryptocurrencies Using Markov-Switching Garch Models," CESifo Working Paper Series 7167, CESifo.
- David Ardia, 2009.
"Bayesian estimation of a Markov-switching threshold asymmetric GARCH model with Student-t innovations,"
Econometrics Journal, Royal Economic Society, vol. 12(1), pages 105-126, March.
- Ardia, David, 2007. "Bayesian Estimation of a Markov-Switching Threshold Asymmetric GARCH Model with Student-t Innovations," DQE Working Papers 6, Department of Quantitative Economics, University of Freiburg/Fribourg Switzerland, revised 08 Jul 2008.
- Abdellah Tahiri & Brahim Benaid & Hassane Bouzahir & Naushad Ali Mamode Khan, 2021. "Testing for the Number of Regimes in Financial Time Series GARCH Volatility," International Journal of Applied Economics, Finance and Accounting, Online Academic Press, vol. 9(2), pages 82-94.
- Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Augustyniak, Maciej, 2014. "Maximum likelihood estimation of the Markov-switching GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 61-75.
- Chang, Kuang-Liang, 2010. "House price dynamics, conditional higher-order moments, and density forecasts," Economic Modelling, Elsevier, vol. 27(5), pages 1029-1039, September.
- Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
- Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013.
"Financial Risk Measurement for Financial Risk Management,"
Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220,
Elsevier.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2012. "Financial Risk Measurement for Financial Risk Management," NBER Working Papers 18084, National Bureau of Economic Research, Inc.
- Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," CREATES Research Papers 2011-37, Department of Economics and Business Economics, Aarhus University.
- Boucher, Christophe M. & Daníelsson, Jón & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014.
"Risk models-at-risk,"
Journal of Banking & Finance, Elsevier, vol. 44(C), pages 72-92.
- Christophe Boucher & Jon Danielsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk models-at-risk," Post-Print hal-02312332, HAL.
- Christophe Boucher & Jón Daníelsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk models-at-risk," Post-Print hal-01243413, HAL.
- Boucher, Christophe M. & Danielsson, Jon & Kouontchou, Patrick S. & Maillet, Bertrand B., 2014. "Risk models–at–risk," LSE Research Online Documents on Economics 59299, London School of Economics and Political Science, LSE Library.
- Christophe Boucher & Jon Danielsson & Patrick Kouontchou & Bertrand Maillet, 2014. "Risk Model-at-Risk," Post-Print hal-01386003, HAL.
- Carol Alexander & Emese Lazar, 2009. "Modelling Regime‐Specific Stock Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(6), pages 761-797, December.
- Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
More about this item
Keywords
GARCH; persistence; volatility components; value-at-risk; expected shortfall;All these keywords.
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cor:louvco:2007019. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alain GILLIS (email available below). General contact details of provider: https://edirc.repec.org/data/coreebe.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.