IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/59361.html
   My bibliography  Save this paper

Model Averaging in Markov-Switching Models: Predicting National Recessions with Regional Data

Author

Listed:
  • Guérin, Pierre
  • Leiva-Leon, Danilo

Abstract

This paper estimates and forecasts U.S. business cycle turning points with state-level data. The probabilities of recession are obtained from univariate and multivariate regime-switching models based on a pairwise combination of national and state-level data. We use two classes of combination schemes to summarize the information from these models: Bayesian Model Averaging and Dynamic Model Averaging. In addition, we suggest the use of combination schemes based on the past predictive ability of a given model to estimate regimes. Both simulation and empirical exercises underline the utility of such combination schemes. Moreover, our best specification provides timely updates of the U.S. business cycles. In particular, the estimated turning points from this specification largely precede the announcements of business cycle turning points from the NBER business cycle dating committee, and compare favorably with competing models.

Suggested Citation

  • Guérin, Pierre & Leiva-Leon, Danilo, 2014. "Model Averaging in Markov-Switching Models: Predicting National Recessions with Regional Data," MPRA Paper 59361, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:59361
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/59361/1/MPRA_paper_59361.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/60250/8/MPRA_paper_60250.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2013. "Time-varying combinations of predictive densities using nonlinear filtering," Journal of Econometrics, Elsevier, vol. 177(2), pages 213-232.
    2. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    3. Michael T. Owyang & Jeremy Piger & Howard J. Wall, 2015. "Forecasting National Recessions Using State‐Level Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 47(5), pages 847-866, August.
    4. Koop, Gary & Korobilis, Dimitris, 2011. "UK macroeconomic forecasting with many predictors: Which models forecast best and when do they do so?," Economic Modelling, Elsevier, vol. 28(5), pages 2307-2318, September.
    5. Gary Koop & Luca Onorante, 2019. "Macroeconomic Nowcasting Using Google Probabilities☆," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 17-40, Emerald Group Publishing Limited.
    6. Granger, Clive W. J. & Terasvirta, Timo, 1999. "A simple nonlinear time series model with misleading linear properties," Economics Letters, Elsevier, vol. 62(2), pages 161-165, February.
    7. Joshua C.C. Chan & Gary Koop & Roberto Leon-Gonzalez & Rodney W. Strachan, 2012. "Time Varying Dimension Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 358-367, January.
    8. Pierre Guérin & Massimiliano Marcellino, 2013. "Markov-Switching MIDAS Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 45-56, January.
    9. Çakmaklı, Cem & Paap, Richard & van Dijk, Dick, 2013. "Measuring and predicting heterogeneous recessions," Journal of Economic Dynamics and Control, Elsevier, vol. 37(11), pages 2195-2216.
    10. Geweke, John & Amisano, Gianni, 2011. "Optimal prediction pools," Journal of Econometrics, Elsevier, vol. 164(1), pages 130-141, September.
    11. Gary Koop & Lise Tole, 2013. "Forecasting the European carbon market," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 176(3), pages 723-741, June.
    12. Michael T. Owyang & Jeremy Piger & Howard J. Wall, 2005. "Business Cycle Phases in U.S. States," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 604-616, November.
    13. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    14. Camacho, Maximo & Perez-Quiros, Gabriel & Poncela, Pilar, 2018. "Markov-switching dynamic factor models in real time," International Journal of Forecasting, Elsevier, vol. 34(4), pages 598-611.
    15. Faust, Jon & Wright, Jonathan H., 2009. "Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 468-479.
    16. Billio, Monica & Casarin, Roberto & Ravazzolo, Francesco & van Dijk, Herman K., 2012. "Combination schemes for turning point predictions," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(4), pages 402-412.
    17. Hamilton, James D & Perez-Quiros, Gabriel, 1996. "What Do the Leading Indicators Lead?," The Journal of Business, University of Chicago Press, vol. 69(1), pages 27-49, January.
    18. Gary Koop & Dimitris Korobilis, 2012. "Forecasting Inflation Using Dynamic Model Averaging," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 53(3), pages 867-886, August.
    19. Miguel Belmonte & Gary Koop, 2014. "Model Switching and Model Averaging in Time-Varying Parameter Regression Models," Advances in Econometrics, in: Bayesian Model Comparison, volume 34, pages 45-69, Emerald Group Publishing Limited.
    20. James D. Hamilton & Michael T. Owyang, 2012. "The Propagation of Regional Recessions," The Review of Economics and Statistics, MIT Press, vol. 94(4), pages 935-947, November.
    21. Chang-Jin Kim & Charles R. Nelson, 1998. "Business Cycle Turning Points, A New Coincident Index, And Tests Of Duration Dependence Based On A Dynamic Factor Model With Regime Switching," The Review of Economics and Statistics, MIT Press, vol. 80(2), pages 188-201, May.
    22. Maximo Camacho & Gabriel Perez‐Quiros & Pilar Poncela, 2015. "Extracting Nonlinear Signals from Several Economic Indicators," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(7), pages 1073-1089, November.
    23. Jeremy J. Nalewaik, 2012. "Estimating Probabilities of Recession in Real Time Using GDP and GDI," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(1), pages 235-253, February.
    24. Koop, Gary & Korobilis, Dimitris, 2013. "Large time-varying parameter VARs," Journal of Econometrics, Elsevier, vol. 177(2), pages 185-198.
    25. Chauvet, Marcelle & Piger, Jeremy, 2008. "A Comparison of the Real-Time Performance of Business Cycle Dating Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 42-49, January.
    26. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    27. Travis J. Berge, 2015. "Predicting Recessions with Leading Indicators: Model Averaging and Selection over the Business Cycle," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(6), pages 455-471, September.
    28. Leiva-Leon, Danilo, 2013. "A New Approach to Infer Changes in the Synchronization of Business Cycle Phases," MPRA Paper 54452, University Library of Munich, Germany.
    29. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    30. Gary Koop & Luca Onorante, 2011. "Estimating Phillips Curves in Turbulent Times using the ECBs Survey of Professional Forecasters," Working Papers 1109, University of Strathclyde Business School, Department of Economics.
    31. Hamilton, James D., 2011. "Calling recessions in real time," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1006-1026, October.
    32. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    33. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    34. Graham Elliott & Allan Timmermann, 2005. "Optimal Forecast Combination Under Regime Switching ," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 46(4), pages 1081-1102, November.
    35. Koop, Gary, 2014. "Forecasting with dimension switching VARs," International Journal of Forecasting, Elsevier, vol. 30(2), pages 280-290.
    36. Chauvet, Marcelle, 1998. "An Econometric Characterization of Business Cycle Dynamics with Factor Structure and Regime Switching," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 969-996, November.
    37. Travis J. Berge & Òscar Jordà, 2011. "Evaluating the Classification of Economic Activity into Recessions and Expansions," American Economic Journal: Macroeconomics, American Economic Association, vol. 3(2), pages 246-277, April.
    38. Kim, Chang-Jin, 1994. "Dynamic linear models with Markov-switching," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 1-22.
    39. Sylvia Fruhwirth-Schnatter, 2004. "Estimating marginal likelihoods for mixture and Markov switching models using bridge sampling techniques," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 143-167, June.
    40. Kholodilin, Konstantin A. & Yao, Vincent W., 2005. "Measuring and predicting turning points using a dynamic bi-factor model," International Journal of Forecasting, Elsevier, vol. 21(3), pages 525-537.
    41. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arabinda Basistha, 2023. "Estimation of short‐run predictive factor for US growth using state employment data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 34-50, January.
    2. Irfan Nurfalah & Aam Slamet Rusydiana & Nisful Laila & Eko Fajar Cahyono, 2018. "Early Warning to Banking Crises in the Dual Financial System in Indonesia: The Markov Switching Approach التحذير المبكر من الأزمات المصرفية في النظام المالي المزدوج في إندونيسيا: مقاربة ماركوف للتحويل," Journal of King Abdulaziz University: Islamic Economics, King Abdulaziz University, Islamic Economics Institute., vol. 31(2), pages 133-156, July.
    3. María Dolores Gadea-Rivas & Ana Gómez-Loscos & Danilo Leiva-Leon, 2017. "The evolution of regional economic interlinkages in Europe," Working Papers 1705, Banco de España.
    4. Baumann, Ursel & Gomez-Salvador, Ramon & Seitz, Franz, 2019. "Detecting turning points in global economic activity," Working Paper Series 2310, European Central Bank.
    5. Gadea-Rivas, María Dolores & Gómez-Loscos, Ana & Leiva-Leon, Danilo, 2019. "Increasing linkages among European regions. The role of sectoral composition," Economic Modelling, Elsevier, vol. 80(C), pages 222-243.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    2. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    3. Michael T. Owyang & Jeremy Piger & Daniel Soques, 2022. "Contagious switching," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(2), pages 415-432, March.
    4. Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
    5. Knut Are Aastveit & Francesco Ravazzolo & Herman K. van Dijk, 2018. "Combined Density Nowcasting in an Uncertain Economic Environment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 131-145, January.
    6. Aastveit, Knut Are & Anundsen, André K. & Herstad, Eyo I., 2019. "Residential investment and recession predictability," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1790-1799.
    7. Camacho, Maximo & Perez Quiros, Gabriel & Poncela, Pilar, 2014. "Green shoots and double dips in the euro area: A real time measure," International Journal of Forecasting, Elsevier, vol. 30(3), pages 520-535.
    8. van Os, Bram & van Dijk, Dick, 2024. "Accelerating peak dating in a dynamic factor Markov-switching model," International Journal of Forecasting, Elsevier, vol. 40(1), pages 313-323.
    9. Magnus Reif, 2020. "Macroeconomics, Nonlinearities, and the Business Cycle," ifo Beiträge zur Wirtschaftsforschung, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 87.
    10. Eraslan, Sercan & Nöller, Marvin, 2020. "Recession probabilities falling from the STARs," Discussion Papers 08/2020, Deutsche Bundesbank.
    11. repec:syb:wpbsba:05/2013 is not listed on IDEAS
    12. Andrea Giusto & Jeremy Piger, 2013. "Nowcasting U.S. Business Cycle Turning Points with Vector Quantization," Working Papers daleconwp2013-02, Dalhousie University, Department of Economics.
    13. Giusto, Andrea & Piger, Jeremy, 2017. "Identifying business cycle turning points in real time with vector quantization," International Journal of Forecasting, Elsevier, vol. 33(1), pages 174-184.
    14. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    15. Camacho, Maximo & Perez-Quiros, Gabriel & Poncela, Pilar, 2018. "Markov-switching dynamic factor models in real time," International Journal of Forecasting, Elsevier, vol. 34(4), pages 598-611.
    16. Cem Çakmakli & Hamza Dem I˙rcani & Sumru Altug, 2021. "Modelling of Economic and Financial Conditions for Real‐Time Prediction of Recessions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(3), pages 663-685, June.
    17. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    18. Camacho, Maximo & Martinez-Martin, Jaime, 2015. "Monitoring the world business cycle," Economic Modelling, Elsevier, vol. 51(C), pages 617-625.
    19. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers halshs-02262202, HAL.
    20. Pauwels, Laurent & Vasnev, Andrey, 2014. "Forecast combination for U.S. recessions with real-time data," The North American Journal of Economics and Finance, Elsevier, vol. 28(C), pages 138-148.
    21. Catherine Doz & Laurent Ferrara & Pierre-Alain Pionnier, 2020. "Business cycle dynamics after the Great Recession: An extended Markov-Switching Dynamic Factor Model," OECD Statistics Working Papers 2020/01, OECD Publishing.

    More about this item

    Keywords

    Markov-switching; Nowcasting; Forecasting; Business Cycles; Forecast combination.;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:59361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.