IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v262y2018i2d10.1007_s10479-015-2044-9.html
   My bibliography  Save this article

Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints

Author

Listed:
  • Ran Ji
  • Miguel A. Lejeune

Abstract

Multi-portfolio optimization problems and the incorporation of marginal risk contribution constraints have recently received a sustained interest from academia and financial practitioners. We propose a class of new stochastic risk budgeting multi-portfolio optimization models that impose portfolio as well as marginal risk constraints. The models permit the simultaneous and integrated optimization of multiple sub-portfolios in which the marginal risk contribution of each individual security is accounted for. A risk budget defined with a downside risk measure is allocated to each security. We consider the two cases in which the asset universes of the sub-portfolios are either disjoint (diversification of style) or overlap (diversification of judgment). The proposed models take the form of stochastic programming problems and include each a probabilistic constraint with multi-row random technology matrix. We expand a combinatorial modeling framework to represent the feasible set of the chance constraints first as a set of mixed-integer linear inequalities. The new reformulation proposed in this paper is much sparser than previously presented reformulations and allows the efficient solution of problem instances that could not be solved otherwise. We evaluate the efficiency and scalability of the proposed method that is general enough to be applied to general chance-constrained optimization problems. We conduct a cross-validation study via a rolling-horizon procedure to assess the performance of the models, and understand the impact of the parameters and diversification types on the portfolios.

Suggested Citation

  • Ran Ji & Miguel A. Lejeune, 2018. "Risk-budgeting multi-portfolio optimization with portfolio and marginal risk constraints," Annals of Operations Research, Springer, vol. 262(2), pages 547-578, March.
  • Handle: RePEc:spr:annopr:v:262:y:2018:i:2:d:10.1007_s10479-015-2044-9
    DOI: 10.1007/s10479-015-2044-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-2044-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-2044-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miguel Lejeune, 2012. "Pattern definition of the p-efficiency concept," Annals of Operations Research, Springer, vol. 200(1), pages 23-36, November.
    2. Roncalli, Thierry, 2013. "Introduction to Risk Parity and Budgeting," MPRA Paper 47679, University Library of Munich, Germany.
    3. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    4. Ogryczak, Wlodzimierz & Ruszczynski, Andrzej, 1999. "From stochastic dominance to mean-risk models: Semideviations as risk measures," European Journal of Operational Research, Elsevier, vol. 116(1), pages 33-50, July.
    5. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    6. Benati, Stefano & Rizzi, Romeo, 2007. "A mixed integer linear programming formulation of the optimal mean/Value-at-Risk portfolio problem," European Journal of Operational Research, Elsevier, vol. 176(1), pages 423-434, January.
    7. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    8. Miguel A. Lejeune, 2012. "Pattern-Based Modeling and Solution of Probabilistically Constrained Optimization Problems," Operations Research, INFORMS, vol. 60(6), pages 1356-1372, December.
    9. David Blake & Alberto G. Rossi & Allan Timmermann & Ian Tonks & Russ Wermers, 2013. "Decentralized Investment Management: Evidence from the Pension Fund Industry," Journal of Finance, American Finance Association, vol. 68(3), pages 1133-1178, June.
    10. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    11. Hsia, Yong & Wu, Baiyi & Li, Duan, 2014. "New reformulations for probabilistically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 233(3), pages 550-556.
    12. Tze Leung Lai & Haipeng Xing & Zehao Chen, 2011. "Mean--variance portfolio optimization when means and covariances are unknown," Papers 1108.0996, arXiv.org.
    13. Tiago P. Filomena & Miguel A. Lejeune, 2014. "Warm-Start Heuristic for Stochastic Portfolio Optimization with Fixed and Proportional Transaction Costs," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 308-329, April.
    14. Sharpe, W F, 1981. "Decentralized Investment Management," Journal of Finance, American Finance Association, vol. 36(2), pages 217-234, May.
    15. B. K. Pagnoncelli & S. Ahmed & A. Shapiro, 2009. "Sample Average Approximation Method for Chance Constrained Programming: Theory and Applications," Journal of Optimization Theory and Applications, Springer, vol. 142(2), pages 399-416, August.
    16. Albina Unger, 2015. "The Use of Risk Budgets in Portfolio Optimization," Springer Books, Springer, edition 127, number 978-3-658-07259-9, December.
    17. Zheng, Xiaojin & Sun, Xiaoling & Li, Duan & Cui, Xueting, 2012. "Lagrangian decomposition and mixed-integer quadratic programming reformulations for probabilistically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 221(1), pages 38-48.
    18. Dimitris Bertsimas & Christopher Darnell & Robert Soucy, 1999. "Portfolio Construction Through Mixed-Integer Programming at Grantham, Mayo, Van Otterloo and Company," Interfaces, INFORMS, vol. 29(1), pages 49-66, February.
    19. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    20. Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
    21. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    22. Elton, Edwin J. & Gruber, Martin J., 2004. "Optimum Centralized Portfolio Construction with Decentralized Portfolio Management," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(3), pages 481-494, September.
    23. Goh, Joel Weiqiang & Lim, Kian Guan & Sim, Melvyn & Zhang, Weina, 2012. "Portfolio value-at-risk optimization for asymmetrically distributed asset returns," European Journal of Operational Research, Elsevier, vol. 221(2), pages 397-406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvana M. Pesenti & Sebastian Jaimungal & Yuri F. Saporito & Rodrigo S. Targino, 2023. "Risk Budgeting Allocation for Dynamic Risk Measures," Papers 2305.11319, arXiv.org, revised Oct 2024.
    2. Singh, Vikas Vikram & Lisser, Abdel & Arora, Monika, 2021. "An equivalent mathematical program for games with random constraints," Statistics & Probability Letters, Elsevier, vol. 174(C).
    3. Hoang Nam Nguyen & Abdel Lisser & Vikas Vikram Singh, 2022. "Random Games Under Elliptically Distributed Dependent Joint Chance Constraints," Journal of Optimization Theory and Applications, Springer, vol. 195(1), pages 249-264, October.
    4. Nguyen, Hoang Nam & Lisser, Abdel & Singh, Vikas Vikram, 2024. "Random games under normal mean–variance mixture distributed independent linear joint chance constraints," Statistics & Probability Letters, Elsevier, vol. 208(C).
    5. Al Janabi, Mazin A.M. & Arreola Hernandez, Jose & Berger, Theo & Nguyen, Duc Khuong, 2017. "Multivariate dependence and portfolio optimization algorithms under illiquid market scenarios," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1121-1131.
    6. Giorgio Costa & Roy Kwon, 2020. "A robust framework for risk parity portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 21(5), pages 447-466, September.
    7. Anis, Hassan T. & Kwon, Roy H., 2022. "Cardinality-constrained risk parity portfolios," European Journal of Operational Research, Elsevier, vol. 302(1), pages 392-402.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ran Ji & Miguel A. Lejeune & Srinivas Y. Prasad, 2017. "Properties, formulations, and algorithms for portfolio optimization using Mean-Gini criteria," Annals of Operations Research, Springer, vol. 248(1), pages 305-343, January.
    2. Lejeune, Miguel A. & Shen, Siqian, 2016. "Multi-objective probabilistically constrained programs with variable risk: Models for multi-portfolio financial optimization," European Journal of Operational Research, Elsevier, vol. 252(2), pages 522-539.
    3. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    4. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    5. Hsia, Yong & Wu, Baiyi & Li, Duan, 2014. "New reformulations for probabilistically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 233(3), pages 550-556.
    6. Ken Kobayashi & Yuichi Takano & Kazuhide Nakata, 2021. "Bilevel cutting-plane algorithm for cardinality-constrained mean-CVaR portfolio optimization," Journal of Global Optimization, Springer, vol. 81(2), pages 493-528, October.
    7. Panos Xidonas & Christis Hassapis & George Mavrotas & Christos Staikouras & Constantin Zopounidis, 2018. "Multiobjective portfolio optimization: bridging mathematical theory with asset management practice," Annals of Operations Research, Springer, vol. 267(1), pages 585-606, August.
    8. Kobayashi, Ken & Takano, Yuichi & Nakata, Kazuhide, 2023. "Cardinality-constrained distributionally robust portfolio optimization," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1173-1182.
    9. Xueting Cui & Xiaoling Sun & Shushang Zhu & Rujun Jiang & Duan Li, 2018. "Portfolio Optimization with Nonparametric Value at Risk: A Block Coordinate Descent Method," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 454-471, August.
    10. Zheng, Xiaojin & Sun, Xiaoling & Li, Duan & Cui, Xueting, 2012. "Lagrangian decomposition and mixed-integer quadratic programming reformulations for probabilistically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 221(1), pages 38-48.
    11. William Lefebvre & Gregoire Loeper & Huy^en Pham, 2020. "Mean-variance portfolio selection with tracking error penalization," Papers 2009.08214, arXiv.org, revised Sep 2020.
    12. Benati, S. & Conde, E., 2022. "A relative robust approach on expected returns with bounded CVaR for portfolio selection," European Journal of Operational Research, Elsevier, vol. 296(1), pages 332-352.
    13. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2024. "Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks," Papers 2407.15532, arXiv.org.
    14. Ran Ji & Miguel A. Lejeune, 2021. "Data-Driven Optimization of Reward-Risk Ratio Measures," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1120-1137, July.
    15. Tongyao Wang & Qitong Pan & Weiping Wu & Jianjun Gao & Ke Zhou, 2024. "Dynamic Mean–Variance Portfolio Optimization with Value-at-Risk Constraint in Continuous Time," Mathematics, MDPI, vol. 12(14), pages 1-17, July.
    16. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    17. Eduardo Bered Fernandes Vieira & Tiago Pascoal Filomena, 2020. "Liquidity Constraints for Portfolio Selection Based on Financial Volume," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 1055-1077, December.
    18. Xiaodi Bai & Jie Sun & Xiaojin Zheng, 2021. "An Augmented Lagrangian Decomposition Method for Chance-Constrained Optimization Problems," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1056-1069, July.
    19. Zhenlong Jiang & Ran Ji & Kuo-Chu Chang, 2020. "A Machine Learning Integrated Portfolio Rebalance Framework with Risk-Aversion Adjustment," JRFM, MDPI, vol. 13(7), pages 1-20, July.
    20. Moarefdoost, M. Mohsen & Lamadrid, Alberto J. & Zuluaga, Luis F., 2016. "A robust model for the ramp-constrained economic dispatch problem with uncertain renewable energy," Energy Economics, Elsevier, vol. 56(C), pages 310-325.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:262:y:2018:i:2:d:10.1007_s10479-015-2044-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.